![]()
Заглавная страница
Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь ![]() Мы поможем в написании ваших работ! КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Мы поможем в написании ваших работ! ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Частные случаи приведения пространственной системы сил
Если при приведении системы сил к динамическому винту главный момент динамы оказался равным нулю, а главный вектор отличен от нуля, то это означает, что система сил приведена к равнодействующей, причем центральная ось является линией действия этой равнодействующей. Выясним, при каких условиях, относящихся к главному вектору Fp и главному моменту М0, это может быть. Поскольку главный момент динамы М* равен составляющей главного момента М0, направленной по главному вектору, то рассматриваемый случай М* =О означает, что главный момент М0 перпендикулярен главному вектору, т. е. /2 = Fo*M0 = 0. Отсюда непосредственно вытекает, что если главный вектор F0 не равен нулю, а второй инвариант равен нулю, Fo≠O, /2 = F0*M0=0, (7.9)то рассматриваемая система приводится к равнодействующей. В частности, если для какого-либо центра приведения F0≠0, а М0 = 0, то это означает, что система сил приведена к равнодействующей, проходящей через данный центр приведения; при этом условие (7.9) также будет выполнено.Обобщим приведенную в главе V теорему о моменте равнодействующей (теорему Вариньона) на случай пространственной системы сил.Если пространственная система. сил приводится к равнодействующей, то момент равнодействующей относительно произвольной точки равен геометрической сумме моментов всех сил относительно той же точки. Таким образом, теорема доказана. Пусть при каком-либо выборе центра приведения Fo=О, М ≠0. Так как главный вектор не зависит от центра приведения, то он равен нулю и при любом другом выборе центра приведения. Поэтому главный момент тоже не меняется при перемене центра приведения, и, следовательно, в этом случае система сил приводится к паре сил с моментом, равным M0 . Составим теперь таблицу всех возможных случаев приведения пространственной системы сил:
Если все силы находятся в одной плоскости, например, в плоскости Оху, то их проекции на ось г и моменты относительно осей х и у будут равны нулю. Следовательно, Fz=0; Mox=0, Moy=0. Внося эти значения в формулу (7.5), найдем, что второй инвариант плоской системы сил равен нулю.Тот же результат мы получим и для пространственной системы параллельных сил. Действительно, пусть все силы параллельны оси z. Тогда проекции их на оси х и у и моменты относительно оси z будут равны 0. Fx=0, Fy=0, Moz=0 На основании доказанного можно утверждать, что плоская система сил и система параллельных сил не приводятся к динамическому винту.
|
|||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.192.112.123 (0.01 с.) |