Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Выборочные средние значения компонент

Поиск

, ;

Выборочные дисперсии компонент

,

или

, ;

Выборочный корреляционный момент

или

;

Выборочный коэффициент корреляции

;

Условные средние компонент

, ,

где усреднение ведется в 1-ой формуле лишь по тем , которые появились совместно с данным у, а во 2-ой формуле лишь по тем , которые появились совместно с данным х.

Функция регрессии имеет важное значение при статистическом анализе зависимостей и может быть использована для прогнозирования значений одной из СВ, если известны значения другой СВ. Точность такого прогноза определяется условной дисперсией. Однако возможности практического применения функции регрессии весьма ограничены, так как для ее использования необходимо знать аналитический вид двумерного распределения . Поэтому идут на упрощение и вместо корреляционной зависимости рассматривают статистическую зависимость, которая устанавливает функциональную связь между значениями одной из величин и условным средним другой величины, например

,

эта функция называется эмпирической функцией регрессии, а ее график – эмпирической линией (кривой) регрессии. На практике получают лишь оценку кривой регрессии, так как число значений величины Х в выборке конечно.

Функция регрессии обладает замечательным свойством – она дает наименьшую среднюю погрешность оценки прогноза, т.е. величина

является минимальной именно для функции

.

На этом свойстве построен метод наименьших квадратов для определения неизвестных параметров функции регрессии.

Сущность метода наименьших квадратов состоит в выборе линии регрессии таким образом, чтобы сумма квадратов отклонений экспериментальных значений Y от теоретических была наименьшей.

Для иллюстрации метода рассмотрим частный случай линейной регрессии

.

По данным выборки требуется определить параметры а и b.

Строим функцию :

.

Используя корреляционную таблицу функцию можно записать в виде

.

Составляем необходимые условия экстремума:

.

После упрощения система примет вид:

.

Последнюю систему называют нормальной, решая ее получаем значения неизвестных коэффициентов а и b.

Уравнение регрессии можно также найти путем вычисления коэффициента регрессии. Уравнение регрессии у на х можно записать в виде

.

Число называют коэффициентом регрессии у на х.

Пример

Двумерная выборка результатов совместных измерений признаков х и у объемом измерений задана корреляционной таблицей:

Таблица 5

Y X   4,2 5,4 6,6 7,8
1,2      
         
4,8      
6,6      
8,4      
10,2        
       
           

1. Найти выборочные средние и выборочные дисперсии .

2. Построить уравнение линии регрессии у на х в виде .

3. На графике изобразить корреляционное поле, т.е. нанести точки и построить прямую .

 

Решение

1. Запишем законы распределения для случайных величин Х и Y:

1,2   4,8 6,6 8,4 10,2  
             

 

  4,2 5,4 6,6 7,8
         

 

Найдем числовые характеристики. Выборочные средние:

,

,

,

;

выборочные дисперсии:

,

,

 

2. Найдем уравнение линии регрессии у на х по методу наименьших квадратов, для этого составим систему уравнений для нахождения коэффициентов а и b:

,

выше при вычислении числовых характеристик было найдено:

, .

Используя корреляционную таблицу каждому варианту признака Х поставим в соответствие среднее арифметическое соответствующих ему (входящих с ним в пару) значений признака Y, т.е.

,

результаты вычислений сведем в таблицу (таблица 6).

 

Таблица 6

1,2   4,8 6,6 8,4 10,2  
3,72 4,10769 4,875 5,9333 6,03157 6,36 7,4

 

Вычислим:

 

Подставим найденные коэффициенты и свободные члены в систему, получим

.

Решим систему по формулам Крамера:

тогда

.

Таким образом, эмпирическая функция регрессии у на х имеет вид:

.

Найдем ту же эмпирическую функцию регрессии у на х путем вычисления коэффициента регрессии

.

Найдем:

, ,

выборочный корреляционный момент найдем по формуле

,

в нашем случае

,

выборочный коэффициент корреляции найдем по формуле

,

в нашем случае

.

Проверим гипотезу о существования связи между факторами Х и Y, вычислим :

,

следовательно, связь достаточно вероятна.

Подставим найденные значения в уравнение

,

получим

,

после преобразований получаем уравнение эмпирической функции регрессии у на х

.

3. Изобразим корреляционное поле и построим прямую (рис. 3).

 

 

 

Рис. 3

Краткое содержание (программа) курса

 

Элементы линейной алгебры

Матрицы, операции над ними. Определители и их свойства и вычисление. Ранг матрицы, обратная матрица. Теорема Кронекера-Капелли. Решение систем линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Система m линейных уравнений с n неизвестными.



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 831; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.108.43 (0.009 с.)