Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Контрольная работа № 1. Элементы линейной алгебры.↑ Стр 1 из 12Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
1.1. Найти значение матричного многочлена , если , , . 1.2. Вычислить определитель двумя способами, по правилу треугольника и разложением по строке (или столбцу): . 1.3. Найти матрицу обратную к матрице и проверить выполнение равенства . 1.4. Решить систему линейных алгебраических уравнений тремя способами: по формулам Крамера, с помощью обратной матрицы, методом Гаусса: . Краткие теоретические сведения для выполнения контрольной работы № 1 и решение типовых задач
Матрицы и действия над ними Прямоугольная таблица чисел вида называется матрицей размера m ´ n; здесь m – число строк, n – число столбцов. Числа (i = 1,2,…, m; j = 1,2,…, n) составляющие матрицу, называются ее элементами. Первый индекс i означает номер строки, второй j – номер столбца. Если число строк и столбцов матрицы одинаковое , то матрица называется квадратной, порядка n. Квадратная матрица, в которой все элементы, не стоящие на главной диагонали, равны нулю, называется диагональной, а диагональная матрица, у которой все элементы, стоящие на главной диагонали равны единице, называется единичной: Квадратная матрица называется треугольной, если все элементы, расположенные по одну сторону от главной диагонали, равны нулю. Например: . Матрица, все элементы которой равны нулю, называется нулевой и обозначается символом О, например . Прямоугольная матрица, в которой каждая строка заменена столбцом с тем же номером, называется транспонированной по отношению к данной матрице, обозначается . Например, если , то . Очевидно, что . Действия над матрицами
Две матрицы одинакового размера называются равными, если их соответствующие элементы равны. А = В, если = (i = 1,2,…, m; j = 1,2,…, n). Суммой двух матриц одинакового размера называется матрица того же размера, все элементы которой равны суммам соответствующих элементов слагаемых матриц. А + В = С, если + = (i = 1,2,…, m; j = 1,2,…, n).
Пример 1 .
Произведением матрицы А на число α называется матрица αА или А α, все элементы которой равны соответствующим элементам матрицы А, умноженным на α.
Пример 2
Матрица называется противоположной матрице А.
Умножение матриц.
Пусть дана матрица А размера m ´ n и матрица В размера n ´ p.
Для двух матриц А и В, у которых число столбцов первой матрицы равно числу строк второй матрицы, определено понятие произведения матрицы А на В следующим образом: С = А · В, где С есть матрица размера m ´ p, , если , где (i = 1,2,…, m; j = 1,2,…, p).
Из определения вытекает следующее правило умножения матриц: чтобы получить элемент, стоящий в i -той строке и j -том столбце произведения двух матриц, нужно элементы i -той строки первой матрицы умножить на соответствующие элементы j –го столбца второй и полученные произведения сложить. Таким образом, чтобы составить первую строку матрицы С нужно перемножить первую строку матрицы А поочередно на все столбцы В; чтобы получить вторую строку произведения С, нужно вторую строку А перемножить последовательно на все столбцы В и т.д. Пример 3
Произведение двух матриц НЕ подчиняется переместительному (коммутативному) закону , в чем можно убедиться на примерах. Кроме того, если произведение АВ определено, то ВА может не иметь смысла. В частных случаях, когда матрицы называются перестановочными. Легко доказать, что единичная матрица Е перестановочна с любой квадратной матрицей А того же порядка, причем А Е = Е А = А. Таким образом, единичная матрица играет роль единицы при умножении. Пример 4 Найти значение матричного многочлена , если , , . Решение .
Определители 2-го и 3-го порядков
Рассмотрим квадратную матрицу 2-го порядка: Определение. Определителем 2-го порядка, соответствующим матрице А, называется число
.
Числа а11, а12, а21, а22 называются элементами определителя (они же элементы матрицы А). Элементы а 11, а 22 составляют главную диагональ, а элементы а 21, а 12 – побочную диагональ.
Пусть дана квадратная матрица 3-го порядка:
. Определение. Определителем 3-го порядка, соответствующим матрице А, называется число D, которое определяется выражением:
Элементы а 11, а 22, а 33 – расположены на главной диагонали, элементы а 13, а 22, а 31 – на побочной диагонали.
|
||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 477; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.9.200 (0.01 с.) |