Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема 9. Метод выборочного наблюденияСодержание книги
Поиск на нашем сайте
Статистика имеет дело с массовыми совокупностями, статистические исследования которых весьма трудоемки и дорогостоящи. Поэтому сплошное наблюдение по возможности заменяется выборочным − наиболее совершенным и научно обоснованным способом несплошного наблюдения. Выборочное наблюдение − это способ наблюдения, при котором обследуется не вся генеральная совокупность, а лишь ее часть, сформированная по определенным правилам, а полученные результаты характеризуют всю генеральную совокупность. Несплошному наблюдению свойственны ошибки репрезентативности. Репрезентативность − это способность выборочной совокупности представлять генеральную совокупность. В выборочном наблюдении решаются две основные задачи: - определение с заданной вероятностью предельной ошибки выборки; - нахождение объема выборки, необходимого для получения результатов с заданной степенью точности. Для решения этих задач используют следующее соотношение: , где - предельная ошибка выборки; - дисперсия выборочной совокупности; - объем выборки; - коэффициент доверия. Значение коэффициента доверия зависит от величины вероятности, с которой необходимо получить результат. Значения коэффициента доверия для разных вероятностей определяются на основе использования интеграла вероятностей Лапласа и представлены в специально сформированной таблице. Например, если результат необходимо получить с вероятностью значение , для вероятности значение , а для вероятности значение и т.д. Приведенная формула позволяет определить предельную ошибку выборки, сформированной повторным способом отбора, т.е. способом, при котором каждое значение признака генеральной совокупности может несколько раз попасть в выборку. В случае бесповторного способа отбора, при котором каждое значение признака генеральной совокупности может попасть в выборку не более одного раза, приведенную формулу определения предельной ошибки выборки необходимо скорректировать на коэффициент, определяемый по формуле: , где - объем генеральной совокупности. Окончательно формула для определения предельной ошибки выборки, сформированной бесповторным способом, имеет вид: . Получив основные результаты выборочного наблюдения (среднее значение выборки и предельную ошибку выборки), можно с заданной вероятностью определить границы, в которых будет находиться среднее значение генеральной совокупности: , где - среднее значение генеральной совокупности; - среднее значение выборки. Приведенные формулы характерны для случая, когда признак совокупности принимает множество различных значений. Однако в генеральной совокупности, а, следовательно, и в выборке изучаемый признак может принимать всего два альтернативных значения. В этом случае вместо среднего значения генеральной совокупности говорят о доле признака в генеральной совокупности , а вместо среднего значения выборки − о частости . Долю признака в генеральной совокупности определяют по формуле: , где - количество интересующих значений признака в генеральной совокупности, а частость признака в выборке по формуле: , где - количество интересующих значений признака в выборке. Формула для определения предельной ошибки выборки, сформированной повторным способом отбора, имеет вид: , а для выборки, сформированной бесповторным способом отбора: . Определение с заданной вероятностью границ, в которых будет находиться доля признака в генеральной совокупности осуществляется по формуле: . Из четырех формул определения предельной ошибки выборки можно вывести формулы определения объема выборки, необходимого для получения результатов с заданной степенью точности. Они будут иметь вид: - для выборки, сформированной повторным способом отбора: (признак принимает множество различных значений); (признак принимает два альтернативных значения); - для выборки, сформированной бесповторным способом отбора: (признак принимает множество различных значений); (признак принимает два альтернативных значения). Пример 9.1. Для изучения оснащения предприятия основными средствами было проведено 10 % выборочное обследование, в результате которого получены данные о распределении предприятий по среднегодовой стоимости основных средств.
Определить: 1) с вероятностью 0,997 предельную ошибку выборочной средней и границы, в которых будет находиться среднегодовая стоимость основных средств всех предприятий генеральной совокупности; 2) с вероятностью 0,954 предельную ошибку выборки при нахождении доли и границы, в которых будет лежать удельный вес предприятий со стоимостью основных средств свыше 40 млн.руб. Решение. 1) Предположим, что приведенная в исходных данных выборка сформирована повторным способом отбора, тогда для нахождения предельной ошибки выборки, с учетом того что , , , можно воспользоваться формулой: млн.руб., а границы, в которых будет находиться среднегодовая стоимость основных средств всех предприятий генеральной совокупности, определить, с учетом того что млн.руб., по формуле: млн.руб. или Если приведенная в исходных данных выборка сформирована бесповторным способом отбора, то для нахождения предельной ошибки выборки воспользуемся формулой: млн.руб., а границы, в которых будет находиться среднегодовая стоимость основных средств всех предприятий генеральной совокупности, определим по формуле: млн.руб. или 2) Предположим, что приведенная в исходных данных выборка сформирована повторным способом отбора, тогда для нахождения предельной ошибки выборки, с учетом того что , , , можно воспользоваться формулой: , а границы, в которых будет находиться доля предприятий со стоимостью основных средств свыше 4 млн.руб., определить по формуле: или . Если приведенная в исходных данных выборка сформирована бесповторным способом отбора, то для нахождения предельной ошибки выборки воспользуемся формулой: , а границы, в которых будет находиться доля предприятий со стоимостью основных средств свыше 4 млн.руб., определить по формуле: или .
|
||||||||||||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 189; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.169.122 (0.006 с.) |