Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Свойства линейно зависимых и линейно независимых векторовСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
1. Если в систему векторов входит нулевой вектор, то она линейно зависима 2. Если в системе векторов имеется два равных вектора, то она линейно зависима. 3. Если в системе векторов имеется два пропорциональных вектора , то она линейно зависима. 4. Система из векторов линейно зависима тогда и только тогда, когда хотя бы один из векторов есть линейная комбинация остальных. 5. Любые векторы, входящие в линейно независимую систему, образуют линейно независимую подсистему. 6. Система векторов, содержащая линейно зависимую подсистему, линейно зависима. 7. Если система векторов линейно независима, а после присоединения к ней вектора оказывается линейно зависимой, то вектор можно разложить по векторам , и притом единственным образом, т.е. коэффициенты разложения находятся однозначно. Докажем, например, последнее свойство. Так как система векторов — линейно зависима, то существуют числа , не все равные 0, что. В этом равенстве . В самом деле, если , то . Значит, нетривиальная линейная комбинация векторов равна нулевому вектору, что противоречит линейной независимости системы . Следовательно, и тогда , т.е. вектор есть линейная комбинация векторов . Осталось показать единственность такого представления. Предположим противное. Пусть имеется два разложения и , причем не все коэффициенты разложений соответственно равны между собой (например, ). Тогда из равенства получаем . Следовательно, линейная комбинация векторов равна нулевому вектору. Так как не все ее коэффициенты равны нулю (по крайней мере ), то эта комбинация нетривиальная, что противоречит условию линейной независимости векторов . Полученное противоречие подтверждает единственность разложения.Векторное пространство называется n -мерным, если в нем можно найти n линейно независимых векторов, но больше, чем n линейно независимых векторов оно не содержит. Размерность пространства – это максимальное число содержащихся в нем линейно независимых векторов. Пространство, имеющее конечную размерность, называется конечномерным. Пространство, в котором можно найти сколь угодно много линейно независимых векторов, называется бесконечномерным. Совокупность n линейно независимых векторов n - мерного векторного пространства называется его базисом. Если каждой паре векторов x, y линейного пространства L поставлено в соответствие действительное число (x, y), так, что для любых x, y и z из L и любого действительного числа α справедливы следующие аксиомы: (x, y) = (y, x), (α ·x, y) = α ·(x, y), (x + y, z) = (x, z) + (y, z), (x, x) > 0 при x ≠ 0, (0, 0) = 0, то в пространстве L определено скалярное произведение (x, y).
Вопрос 14 Прямая на плоскости: Общее уравнение Ax + By + C ( > 0). Вектор = (А; В) - нормальный вектор прямой. В векторном виде: + С = 0, где - радиус-вектор произвольной точки на прямой (рис. 4.11). Частные случаи: 1) By + C = 0 - прямая параллельна оси Ox; 2) Ax + C = 0 - прямая параллельна оси Oy; 3) Ax + By = 0 - прямая проходит через начало координат; 4) y = 0 - ось Ox; 5) x = 0 - ось Oy.
Каждый не равный нулю вектор, лежащий на данной прямой или параллельный ей, называется направляющим вектором этой прямой. Направляющий вектор произвольной прямой в дальнейшем обозначается буквой , его координаты - буквами l, m, n: . Если известна одна точка прямой и направляющий вектор , то прямая может быть определена (двумя) уравнениями вида
Каноническое уравнение прямой
ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М 1 и вектора , параллельного этой прямой. Вектор , параллельный прямой, называется направляющим вектором этой прямой. Итак, пусть прямая l проходит через точку М 1(x 1, y 1, z 1), лежащую на прямой параллельно вектору . Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что . Векторы и коллинеарны, поэтому найдётся такое число t, что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М 1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М, лежащей на прямой. Запишем это уравнение в координатной форме. Заметим, что , и отсюда Полученные уравнения называются параметрическими уравнениями прямой. При изменении параметра t изменяются координаты x, y и z и точка М перемещается по прямой.
|
||||||||||||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 752; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.8.2 (0.01 с.) |