Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Оплодотворение — начальный этап развития нового организма. Фазы оплодотворения. Характеристика и значение основных этапов эмбрионального развития.

Поиск

Эмбриогенез включает в себя процессы с момента оплодотворения до рождения и включает следующие его дни.

1. Оплодотворение, в результате которого образуется зигота (одноклеточный зародыш),

2. Дробление зародыша с образованием бластулы.

3. Гаструляция — образование 3-х листкового зародыша.

4. Гистогенез, органогенез и ситемагенез — дифференцировка зародышевых листков в ткани органов, образование из органов систем органов.

Оплодотворение — на­чальный этап развития нового организма. Фазы оплодотворения. Харак­теристика и значение основных этапов эмбрионального развития.

Оплодотворение (fertilisatio) – слияние мужской и женской половых клеток, в результате чего восстанавливается диплоидный набор хромосом, характерный для данного вида животных, и возникает качественно новая клетка – зигота (оплодотворенная яйцеклет-

ка, или одноклеточный зародыш).В результате оплодотворения происходит случайное объединение хромосомных комплексов (генетического материала) мужских и жен-

ских гамет. В процессе оплодотворения выделяют три фазы:

1) дистантное взаимодействие и сближение гамет; 2) контактное взаимодействие и активация яйцеклетки; 3) вхождение сперматозоида в яйцо и последующее слияние – спермия.

Первая фаза – дистантное взаимодействие и сближение гамет обеспечивается хемотаксисом – совокупностью специфических факторов, повышающих вероятность столкновения половых клеток. Важную роль в этом играют гамоны – химические вещества, выра-батываемые половыми клетками. Яйцеклетки выделяют пептиды, способствующие привлечению сперматозоидов. Под действием секрета женских половых путей, происходит капацитация –приобретение спермиями оплодотворяющей способности. В процессе капацитации с плазмолеммы спермия в области акросомы удаляются гликопротеины и протеины семенной плазмы, что способствует акросомальной реакции. Оплодотворение происходит в ампулярной части яйцевода.Оплодотворению предшествует осеменение – взаимодействие и сближение гамет (дистантное взаимодействие), обусловленное хемотаксисом.

Вторая фаза оплодотворения – контактное взаимодействие,во время которого сперматозоиды вращают яйцеклетку. Многочисленные спермии приближаются к яйцеклетке и вступают в контакт с ее оболочкой. Яйцеклетка начинает совершать вращательные движения вокруг своей оси. Эти движения обусловлены влиянием биения жгутиков сперматозоидов. В процессе взаимодействия мужской и женской половых клеток в спермиях происходит акросомальная реакция. Она заключается в слиянии наружной мембраны акросомы с передними 2/3 плазмолемы спермия. Затем в области слияния мембраны разрываются и ферменты акросомы выходят в окружающую среду. Инициация второй фазы оплодотворения происходит под влиянием сульфатированных полисахаридов блестящей зоны, которые вызывают поступление ионов кальция и натрия в головку спермия, замещение ими ионов калия и водорода и разрыв мембраны акросомы. Прикрепление спермия к яйцеклетке происходит под влиянием углеводной группы гликопротеинов прозрачной зоны яйцеклетки. Рецепторы спермия для прозрачной зоны представляют собой фермент гликозилтрансферазу, находящийся на поверхности акросомы головки, который «узнает» сахар N-ацетилглюкозамин – рецептор женской половой клетки. Плазматические мембраны в месте контакта половых клеток сливаются и происходит плазмогамия – обьединение цитоплазмы обоих гамет. Сперматозоиды при контакте с яйцеклеткой могут связывать

десятки тысяч молекул гликопротеида Zp3. При этом отмечается запуск акросомальной реакции. Акросомальная реакция характеризуется повышением проницаемости плазмолеммы спермия к ионам Са²+, деполяризацией ее, что способствует слиянию плазмолеммы с передней мембраной акросомы. Блестящая зона оказывается в непосредственном контакте с акросомальными ферментами. Ферменты разрушают блестящую зону, спермий проходит через нее и входит в перивителлиновое пространство, расположенное между блестящей зоной и плазмолеммой яйцеклетки. Через несколько секунд изменяются свойства плазмолеммы яйцеклетки и начинается кортикальная реакция, а через несколько минут изменяются свойства блестящей зоны – Zp (зонная реакция). У млекопитающих при оплодотворении в яйцеклетку проникает лишь один сперматозоид. Такое явление называется моноспермией.

Третья фаза. В ооплазму проникают головка и промежуточная часть хвостового отдела. После вхождения сперматозоида в яйцеклетку на периферии ооплазмы происходит уплотнение ее (зонная реакция) и образуется оболочка оплодотворения.Кортикальная реакция – слияние плазмолеммы яйцеклетки с мембранами кортикальных гранул, в результате чего содержимое из гранул выходит в перивителлиновое пространство и воздействует на молекулы гликопротеидов блестящей зоны. Вследствие этой зонной реакции молекулы Zp3 модифицируются и утрачивают способность быть рецепторами спермиев. Образуется оболочка оплодотворения, препятствующая полиспермии – проникновению других спермиев.

Механизм кортикальной реакции включает приток ионов натрия через участок мембраны сперматозоида, встроенный в поверхность яйцеклетки после завершения акросомальной реакции. В результате отрицательный мембранный потенциал клетки становится слабоположительным. Приток ионов натрия обусловливает высвобождение ионов кальция из внутриклеточных депо и увеличение его содержания в гиалоплазме яйцеклетки. Вслед за этим начинается экзоцитоз кортикальных гранул. Высвобождающиеся из них прото-литические ферменты разрывают связи между блестящей зоной и плазмолеммой яйцеклетки, а также между спермиями и прозрачной зоной. Кроме того, выделяется гликопротеид, связывающий воду и привлекающий ее в пространство между плазмолеммой и блестящей зоной. Вследствие этого формируется перивителлиновое пространство. Наконец, выделяется фактор, способствующий затвердению прозрачной зоны и образованию из нее оболочки оплодотворения.

Дробление - это деление оплодотворенной яйцеклетки(я/к) (уже зародыша) митозом. Дочерние клетки называются бластомерами, они не расходятся. При дроблении очень короткие интерфазы, поэтому бластомеры не успевают расти, а наоборот с каждым делением становятся размерами все меньше и меньше, т.е. количество бластомеров увеличивается, а обьем каждого отдельного бластомера уменьшается. Тип дробления зависит от типа я/к, т.е. от количества и распределения желтка.

Полное дробление — когда в дроблении участвуют все участки зародыша; характерно для олиго-изолецитальных(ланцетник, млекопитающие), а также мезо-умеренно телолецитальных я/к (лягушка).

Неполное дробление — когда дробление идет только на анимальном полюсе, вегетативный полюс перегружен желтком и в дроблении не участвует. Характерно для поли- и резко телолецитальных я/к (птицы).

Равномерное дробление — образовавшиеся бластомеры равные, одинаковые; характерно для олиго- и I изолецитальных я/к (ланцетник).

Неравномерное дробление — образовавшиеся бластомеры неравные, разные: одни крупные, другие мелкие; одни дифференцируются в тело зародыша, другие — для питания; хар-но для мезо- и полилецитальных (лягушка, птица), а также для олигоIIизолецитальных я/к (млекопитающие).

Синхронное дробление — когда все бластомеры дробятся одинаковой скоростью и поэтому количество их увеличивается по правильной прогрессии, т.е. кратное увеличение; Асинхронное дробление — кол-во бластомеров увеличивается по неправильной прогрессии;

У ланцетника дробление полное, равномерное, синхронное. В результате такого дробления у ланцетника образуется целобластула — полый пузырек, заполненный жидкостью. Стенка целобластулы (бластодерма) образована одним слоем бластомеров и в ней различают крышу, дно и краевую зону.

У лягушки дробление полное, неравномерное, асинхронное; в результате образуется амфибластула, состоящая из анимального и вегетативного полюса и бластоцели с жидкостью. Бластомеры анимального полюса мелкие, дифференцируются в последующем в тело зародыша, а бластомеры вегетативного полюса крупные, перегружены желтком и обеспечивают питание зародыша.

У птиц дробление неполное (дискоидальное), неравномерное и асинхронное; в результате образуется дискобластула. Желток в дроблении не участвует, остается как одно целое; дробление идет только на анимальном полюсе. т.е. где ядро и органоиды я/к. Образовавшиеся бластомеры распластываются на желтке и называются зародышевым щитком; между зародыш. щитком и желтком имеется узкая щель — бластоцель.

У млекопитающих дробление полное, неравномерное, асинхронное; в результате образуются бластомеры 2-х типов: в центре крупные темные бластомеры — это эмбриобласт, дифференцируется в тело; по периферии мелкие светлые бластомеры — это трофобласт, участвующий при формировании хориона и плаценты. Вначале образуется морула (полости еще нет), впоследствии трофобласт всасывает жидкость слизистой яйцевыводящих путей, поэтому морула превращается в полый пузырек — эпибластула (синоним — стерробластула): стенка пузырька из одного слоя бластомеров трофобласта; полость (бластоцель) пузырька заполнена жидкостью; на одном полюсе к трофобласту изнутри прикреплен эмбриобласт.

После дробления начинается следующий этап — гаструляция. Гаструляция — это сложный процесс, где в результате размножения, роста, дифференцировки и направленного перемещения бластомеров образуется трехлистковый зародыш, т.е. образуются зародышевые листки: эктодерма, энтодерма и мезодерма.

У ланцетника гаструляция происходит способом инвагинации (впячивание): дно бластулы постепенно впячивается под крышу и формируется эктодерма и энтодерма; при этом образуется гастроцель и гастропора. Мезодерма образуется путем выпячивания энтодермы.

У лягушки гаструляция происходит способом эпиболии (обрастание): бластомеры анимального полюса делятся быстрее и начинают обрастать вегетативный полюс.

У птиц гаструляия очень похожа с гаструляцией у млекопитающих. Гаструляия идет в 2 этапа:

I этап деламинация (расщепление), II этап — иммиграция (выселение). На I этапе зародышевый щиток расщепляется на 2 листка: верхний — эпибласт, нижний — гипобласт.

II этап -иммиграция, состоит из 2-х фаз: I фаза — подготовка к иммиграции, в рез-те образуются на поверхности эпибласта прехордальная пластинка, I узелок и I полоска:

Оставшаяся часть эпибласта после выселения клеток прехордальной пластинки, I узелка и I полоски называется эктодермой. Гипобласт после присоединения к нему клеток прехордальной пластинки называется энтодермой. Клетки I узелка выселяясь образуют первый осевой орган — хорду, а I полоска выселяясь образует мезодерму.

После гаструляции начинается следующий этап эмбрионального развития — дальнейшая дифференцировка зародышевых листков с образованием из них тканей, органов и систем органов (гистогенез, органогенез, системогенез).

Мезодерма подразделяется на 3 части: дорсальная часть — сомиты, которые в свою очередь состоят из дерматомов, миотомов и склеротомов; вентральная часть мезодермы — спланхнотомы, состоящие из париетальных и висцеральных листков; часть мезодермы соединяющая сомиты со спланхнотомами в передней части туловища сегментируется и назвается нефрогонотомами (синоним: сегментные ножки), а в задней части туловища не сегментируется и называется нефрогенной тканью.

Пространство между 3-мя зародышевыми листками заполняется мезенхимой (образуется путем выселения из всех 3-х листков, но преимущественно из мезодермы).

Из эктодермы в дорсальной части путем впячивания образуется еще один осевой орган — нервная трубка, из которой потом образуется вся нервная система.

Гаструляция у млекопитающих протекает в принципе аналогично у птиц, хотя имеются некоторые особенности. На I стадии путем деляминации из эмбриобласта образуются также эпибласт и гипобласт. Дальше эпибласт и гипобласт начинают прогибаться в противоположных направлениях и образуют соответственно 2 пузырька: из эпибласта — амниотический, из гипобласта — желточный. Лишь только после этого начинается II этап гаструляции — иммиграция, протекающая практически также как у птиц.

II этап гаструляции — иммиграция начинается на части эпибласта, являющейся дном амниотического пузырька: I фаза — подготовка к выселению с образованием на поверхности дна амниотического пузырька прехордальной пластинки, I узелка, I полоски. А дальше идет II фаза иммиграции — собственно выселение клеток этих 3-х структур: клетки прехордальной пластинки включаются в состав гипобласта и образуется энтодерма; из I узелка образуется хорда, а из клеток I полоски после выселения образуется средний зародышевый листок — мезодерма.

После гаструляции начинается дальнейшяя дифференцировка зародышевых листков — гистогенез, органогенез, системогенез. Из зародышевых листков образуется:

I. ЭКТОДЕРМА:

1)эпидермис кожи и его производные (сальные, потовые, молочные железы, ногти, волосы), нервная ткань, нейросенсорные и сенцоэпителиальные клетки органов чувств, эпителий ротовой полости и его производные (слюнные железы, эмаль зуба, эпителий аденогипофиза), эпителий и железы анального отдела прямой кишки;

II. МЕЗОДЕРМА:

1) дерматомы — собственно кожа (дерма кожи);

2) миотомы — скелетная мускулатура;

3) склеротомы — осевой скелет (кости, хрящи);

4) нефрогонотомы (сегментные ножки) — эпителий мочеполовой системы;

5) спланхнотомы — эпителий серозных покровов (плевра, брюшина, околосердечная сумка), гонады, миокард, корковая часть надпочечников;

6) нефрогенная ткань — эпителий нефронов почек.

III. ЭНТОДЕРМА:

1) часть энтодермы, образованная из прехордальной пластинки — эпителий и железы пищевода и дыхательной системы;

2) часть энтодермы, образованная из гипобласта — эпителий и железы всей пищеварительной трубки (включая печень и поджелудочную железу); участвует при образовании переходного эпителия мочевого пузыря (аллантоис).

IV. МЕЗЕНХИМА:

1) все виды соединительной ткани (кровь и лимфа, рыхлая и плотная волокнистая соед.ткань, соед.ткань со специальными свойствами, костные и хрящевые ткани);

2) гладкая мышечная ткань;

3) эндокард.


28. Дроб­ление как процесс образования многоклеточного зародыша. Типы дроб­ления. Связь строения яйцеклетки с типом дробления.

Дробление — это ряд последовательных митотических делений зиготы и бластомеров, заканчивающихся образованием многоклеточного зародыша — бластулы. Первое деление дробления начинается после объединения наследственного материала пронуклеусов и образования общей метафазной пластинки. Возникающие при дроблении клетки называют бластомерами (от греч. бласте—росток, зачаток). Особенностью митотических делений дробления является то, что с каждым делением клетки становятся все мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объемов ядра и цитоплазмы.Между очередными делениями не происходит роста клеток, но обязательно синтезируется ДНК.Все предшественники ДНК и необходимые ферменты накоплены в процессе овогенеза. В результате митотические циклы укорочены и деления следуют друг за другом значительно быстрее, чем в обычных соматических клетках. Сначала бластомеры прилегают друг к другу, образуя скопление клеток, называемое морулой. Затем между клетками образуется полость — бластоцель, заполненная жидкостью. Клетки оттесняются к периферии, образуя стенку бластулы — бластодерму. Общий размер зародыша к концу дробления на стадии бластулы не превышает размера зиготы.

 

Как правило, бластомеры располагаются в строгом порядке друг относительно друга и полярной оси яйца. Порядок, или способ, дробления зависит от количества, плотности и характера распределения желтка в яйце. По правилам Сакса — Гертвига клеточное ядро стремится расположиться в центре свободной от желтка цитоплазмы, а веретено клеточного деления — в направлении наибольшей протяженности этой зоны.

В олиго- и мезолецитальных яйцах дробление полное, или голобластическое. Такой тип дробления встречается у ланцетников, некоторых рыб, всех амфибий, а также у сумчатых и плацентарных млекопитающих. При полном дроблении плоскость первого деления соответствует плоскости двусторонней симметрии. Плоскость второго деления проходит перпендикулярно плоскости первого. Обе борозды первых двух делений меридианные, т.е. начинаются на анимальном полюсе и распространяются к вегетативному полюсу. Яйцевая клетка оказывается разделенной на четыре более или менее равных по размеру бластомера. Плоскость третьего деления проходит перпендикулярно первым двум в широтном направлении. У животных,имеющих изолецитальные яйца,все восемь образующихся бластомеров оказываются примерно равными – равномерное дробление. В мезолецитальных яйцах проявляется неравномерность дробления. На анимальном полюсе четыре более мелких бластомера — микромеры, на вегетативном — четыре более крупных — макромеры. Затем деление опять идет в меридианных плоскостях, а потом опять в широтных.

В полилецитальных яйцеклетках костистых рыб, пресмыкающихся, птиц, а также однопроходных млекопитающих дробление частичное, или меробластическое, т.е. охватывает только свободную от желтка цитоплазму. Она располагается в виде тонкого диска на анимальном полюсе, поэтому такой тип дробления называют дискоидальным.

При характеристике типа дробления учитывают также взаимное расположение и скорость деления бластомеров. Если бластомеры располагаются рядами друг над другом по радиусам, дробление называют радиальным. Оно типично для хордовых и иглокожих. В природе встречаются и другие варианты пространственного расположения бластомеров при дроблении, что определяет такие его типы, как спиральное у моллюсков, билатеральное у аскариды, анархичное у медузы.

Замечена зависимость между распределением желтка и степенью синхронности деления анимальных и вегетативных бластомеров. В олиголецитальных яйцах иглокожих дробление почти синхронное, в мезолецитальных яйцевых клетках синхронность нарушена после третьего деления, так как вегетативные бластомеры из-за большого количества желтка делятся медленнее. У форм с частичным дроблением деления с самого начала асинхронны и бластомеры, занимающие центральное положение, делятся быстрее. К концу дробления образуется бластула. Тип бластулы зависит от типа дробления, а значит, от типа яйцеклетки.

Особенности молекулярно-генетических и биохимических процессов при дроблении. Митотические циклы в периоде дробления сильно укорочены, особенно в самом начале.

В разных типах яиц транскрипция генов и синтез РНК начинаются на разных стадиях. В тех случаях, когда в цитоплазме много различных веществ, как, например, у земноводных, транскрипция активируется не сразу. Синтез РНК у них начинается на стадии ранней бластулы. Напротив, у млекопитающих синтез РНК уже начинается на стадии двух бластомеров.

В периоде дробления образуются РНК и белки, аналогичные синтезируемым в процессе овогенеза. В основном это гистоны, белки клеточных мембран и ферменты, необходимые для деления клеток. Названные белки используются сразу же наравне с белками, запасенными ранее в цитоплазме яйцеклеток. Наряду с этим в период дробления возможен синтез белков, которых не было ранее.Иногда эти РНК и белки начинают действовать на более поздних стадиях.

Важную роль в дроблении играет деление цитоплазмы — цитотомия. Она имеет особое морфогенетическое значение, так как определяет тип дробления. В процессе цитотомии сначала образуется перетяжка с помощью сократимого кольца из микрофиламентов. Сборка этого кольца проходит под непосредственным влиянием полюсов митотического веретена. После цитотомии бластомеры олиголецитальных яиц остаются связанными между собой лишь тоненькими мостиками. Именно в это время их легче всего разделить. Это происходит потому, что цитотомия ведет к уменьшению зоны контакта между клетками из-за ограниченной площади поверхности мембран

Сразу после цитотомии начинается синтез новых участков клеточной поверхности, зона контакта увеличивается и бластомеры начинают плотно соприкасаться. Борозды дробления проходят по границам между отдельными участками овоплазмы, отражающим явление овоплазматической сегрегации. Поэтому цитоплазма разных бластомеров различается по химическому составу.




Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 1673; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.254.103 (0.013 с.)