Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ограниченные и неограниченные последовательности

Поиск

 

Определение. Последовательность называется ограниченной, если существует такое число , что для любого справедливо неравенство:

т.е. все члены последовательности принадлежат отрезку .

Определение. Последовательность называется ограниченной сверху, если для любого существует такое число , что

.

Определение. Последовательность называется ограниченной снизу, если для любого n существует такое число , что

Пример. – ограничена снизу {1, 2, 3, … }.

Определение. Число называется пределом последовательности , если для любого положительного существует такой номер , что для всех выполняется неравенство:

Обозначение: . В этом случае говорят, что последовательность сходится к при .

Пример. Доказать, что предел последовательности .

Пусть при верно , т.е. . Это верно при , таким образом, если за взять целую часть от , то утверждение, приведенное выше, выполняется.

Пример. Показать, что при последовательность имеет пределом число 2. Имеем ; .Для любого положительного числа существует такое натуральное число , что , т.е. .

Теорема. Последовательность не может иметь более одного предела.

 

Доказательство. Предположим, что последовательность имеет два предела и , не равные друг другу.

.

Тогда по определению существует такое число , что

и .

Запишем выражение: .

Так как - любоеположительноечисло, то , т.е. . Теорема доказана.

Теорема. Если , то .

Доказательство. Из следует, что . В то же время:

 

, т.е. , т.е. . Теорема доказана.

Теорема. Если , то последовательность ограничена.

Необходимо отметить, что обратное утверждение неверно, т.е. из ограниченности последовательности не следует ее сходимость.

Например, последовательность не имеет предел. В то же время

 

Монотонные последовательности

 

Определении

1) Если для всех , то последовательность называется возрастающей.

2) Если для всех , то последовательность называется неубывающей.

3) Если для всех , то последовательность называется убывающей.

4) Если для всех , то последовательность называется невозрастающей.

Все эти последовательности называются монотонными. Возрастающие и убывающие последовательности называются строго монотонными.

Пример. – убывающая и ограниченная; – возрастающая и неограниченная.

Пример. Доказать, что последовательность монотонная и возрастающая.

Найдем -й член последовательности

Найдем знак разности:

, т.к. , то знаменатель положительный при любом .

Таким образом, . Последовательность возрастающая, что и следовало доказать.

Пример. Выяснить является возрастающей или убывающей последовательность

.

Найдём . Определим разность , так как , то , т.е. . Последовательность монотонно убывает.

Заметим, что монотонные последовательности являютс ограниченными по крайней мере с одной стороны.

Теорема. Монотонная ограниченная последовательность имеет конечный предел.

Доказательство. Рассмотрим монотонную неубывающую последовательность

Эта последовательность ограничена сверху: , где – некоторое число. Так как любое ограниченное сверху, числовое множество имеет точную верхнюю грань, то для любого существует число такое, что , где – точная верхняя грань множества значений последовательности.

Так как - неубывающая последовательность, то при ,

. Отсюда или или , т.е. .

Для остальных монотонных последовательностей доказательство аналогично. Теорема доказана.

Число е

 

Рассмотрим последовательность .Если последовательность монотонная и ограниченная, то она имеет конечный предел. По формуле бинома Ньютона:

или

Покажем, что последовательность – возрастающая. Действительно, запишем выражение и сравним его с выражением :

Каждое слагаемое в выражении больше соответствующего значения , и, кроме того, у последовательности добавляется еще одно положительное слагаемое. Таким образом, для любого натурального числа , т.е последовательность возрастающая.

Докажем теперь, что при любом n ее члены не превосходят трех: .

Таким образом, последовательность - монотонно возрастающая и ограниченная сверху, т.е. имеет конечный предел. Этот предел принято обозначать буквой е.

.

Число является трпансцендентным числом и приблизительно равно

Число является основанием натурального логарифма.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 1432; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.46.202 (0.006 с.)