Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Ограниченные и неограниченные последовательности.Содержание книги
Поиск на нашем сайте
Последовательность {xn} называется ограниченной, если существует такое число М>0, что для любого n верно неравенство: т.е. все члены последовательности принадлежат промежутку (-М; M).
Пример. {xn} = n – ограничена снизу {1, 2, 3, … }.
Число а называется пределом последовательности {xn}, если для любого положительного e>0 существует такой номер N, что для всех n > N выполняется условие: Это записывается: lim xn = a.
В этом случае говорят, что последовательность {xn}сходится к при n®¥.
Теорема. Последовательность не может иметь более одного предела.
Возрастающие и убывающие последовательности называются строго монотонными.
Пример. {xn} = 1/n – убывающая и ограниченная {xn} = n – возрастающая и неограниченная.
Предел функции в точке.
Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что 0 < ïx - aï < D верно неравенство ïf(x) - Aï< e. То же определение может быть записано в другом виде: Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e. Запись предела функции в точке:
Определение: Если f(x) ® A1 при х ® а только при x < a, то - называется пределом функции f(x) в точке х = а слева, а если f(x) ® A2 при х ® а только при x > a, то называется пределом функции f(x) в точке х = а справа. Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х=а.
Предел функции при стремлении аргумента к бесконечности.
Определение. Число А называется пределом функции f(x) при х®¥, если для любого числа e>0 существует такое число М>0, что для всех х, ïхï>M выполняется неравенство Записывают:
Графически можно представить:
Основные теоремы о пределах.
Бесконечно малые функции.
Функция f(x) называется бесконечно малой при х®а, если .
Свойства бесконечно малых функций:
Бесконечно большие функции и их связь с бесконечно малыми.
Функция называется бесконечно большой при х®а, если , где А – число или одна из величин ¥, +¥ или -¥.
Теорема. Если f(x)®0 при х®а (если х®¥) и не обращается в ноль, то Если то функции a и b называются эквивалентными бесконечно малыми. Записывают a ~ b.
Некоторые замечательные пределы.
Первый замечательный предел. Второй замечательный предел Кроме изложенных выше, пределов можно записать следующие полезные на практике соотношения:
Из замечательных пределов следует, что: Пример. Найти предел Так как tg5x ~ 5x и sin7x ~ 7x при х ® 0, то, заменив функции эквивалентными бесконечно малыми, получим: Вычисление пределов. К разряду неопределенностей принято относить следующие соотношения: При вычислении пределов необходимо избавиться от неопределенности. , где , - многочлены.
Итого: Формулы сложения аргументов
Пример. Найти предел.
Пример. Найти предел.
Пример. Найти предел.
Пример. Найти предел.
Пример. Найти предел. Пример. Найти предел . Для нахождения этого предела разложим на множители числитель и знаменатель данной дроби. x2 – 6x + 8 = 0; x2 – 8x + 12 = 0; D = 36 – 32 = 4; D = 64 – 48 = 16; x1 = (6 + 2)/2 = 4; x1 = (8 + 4)/2 = 6; x2 = (6 – 2)/2 = 2; x2 = (8 – 4)/2 = 2; Пример. Найти предел.
домножим числитель и знаменатель дроби на сопряженное выражение: = = .
Пример. Найти предел. Пример. Найти предел .
Разложим числитель и знаменатель на множители. x2 – 3x + 2 = (x – 1)(x – 2) x3 – 6x2 + 11x – 6 = (x – 1)(x – 2)(x – 3), т.к. x2 – 5x + 6 = (x – 2)(x – 3) Тогда
Непрерывность функции в точке.
Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точке х0, если предел функции и ее значение в этой точке равны, т.е. Тот же факт можно записать иначе:
Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва.
Пример непрерывной функции: Пример разрывной функции:
|
||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 206; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.253.195 (0.006 с.) |