Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Что произойдет при сливании растворов хлорида железа (II) и карбоната натрия? Написать уравнения совместного гидролиза в ионно-молекулярной и молекулярной формах.

Поиск
Дано: Водные растворы хлорида железа (II) и карбоната натрия Решение До сливания в растворе каждой соли протекает ее гидролиз по I ступени: Fe Cl2 Fe (OH)2 + HCl слаб. сильн. Na2 CO3 NaOH + H2 CO 3 сильн. слаб.
Написать в ионно-молекуляр-ной и молекулярной формах уравнение процессов, происходящих при сливании растворов этих солей

До сливания в растворе каждой соли гидролизу подвергаются ионы Fe2+ и СО32-.

I ступень:

Fe 2+ +H OH <=>FeOH+ + → Н2О pH < 7;

CO 32-+ H OH<=>HCO3-+ pH > 7.

После сливания растворов продукт гидролиза первой соли (Н+) взаимодействует с продуктом гидролиза второй соли (ОН-) с образованием слабо диссоциирующего соединения Н2О, что приводит к смещению химического равновесия в сторону прямой реакции. Усиление гидролиза первой и второй соли приводит к протеканию II ступени гидролиза с образованием осадка и выделением газа.

II ступень:

 
 
H+ OH-


FeOH+ + H OH = Fe(OH)2↓ + → Н2О

HCO3- + H OH = H2CO3 +

CO2↑ H2O

Сокращенное ионно-молекулярное уравнение совместного гидролиза двух солей:

Fe2+ + CO32- + H2O = Fe(OH)2↓ + CO2↑.

Молекулярное уравнение совместного гидролиза:

FeCl2 + Na2CO3 + H2O= Fe(OH)2↓ + CO2↑ + 2NaCl.

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ

РЕАКЦИИ

УРОВЕНЬ В

Закончить уравнения реакций и уравнять их используя метод электронного баланса. Указать окислитель и восстановитель

а) Pb + HNO3 конц

б) S + HNO3 конц

в) P + H2SO4 конц

г) Mg + H2SO4 конц

а) Металл + НNО3(конц) → соль + оксид азота + Н2О.

Формула оксида азота зависит от активности металла: N2O выделится, если в реакцию вступает активный металл (стоящий в ряду стандартных электродных потенциалов в интервале Li...Al);

NО выделится, если в реакцию вступает металл средней активности (Mn–Рb);

NO2 выделится, если в реакцию вступает малоактивный металл (стоящий в ряду стандартных электродных потенциалов после водорода).

Дано: а) Pb + HNO3 конц → S + HNO3 конц → б) P + H2SO4 конц → Mg + H2SO4 конц Решение а) Pb0 + HN+5O3 конц = восст. окисл. = Pb+2(NO3)2 + N+2O + H2O НОК ДМ восстановитель Pb0 – 2ē = Pb+2 3 окислитель N+5 + 3ē = N+2 2 3Pb0 + 2N+5 = 3Pb+2 + 2N+2
Уравнять реакции и указать окислитель и восстановитель

Переносим полученные коэффициенты в молекулярное урав-нение:

3Pb0 + 2HN+5O3(конц) = 3Pb+2(N+5O3)2 + N+2O + H2O.

Поскольку азотная кислота расходуется не только на получение 2 моль NO, но и на получение 3 моль Pb(NO3)2, в которых содержится 6NO со степенью окисления N+5, то для протекания этого процесса необходимо дополнительно 6 моль HNO3:

6HNO3 (конц) + 3Pb0 + 2HNO3(конц) = 3Pb(NO3)2 + 2NO + H2O

Суммируем число моль HNO3 и уравниваем количество водорода и кислорода (4Н2О):

3Рb + 8HNO3(конц) = 3Pb(NO3)2 + 2NO + 4Н2О.

б) Неметалл + HNO3(конц) → кислота, в которой неметалл проявляет высшую степень окисления + NO2 + (Н2О):

B → H3B+3O3; P → H3P+5O4; S → H2S+6O4; Se → H2Se+6O4;

Si → H2Si+4O3; C → H2C+4O3; As → H3As+5O4.

Решение

So + HN+5O3(конц) = Н2S+6O4 + N+4O2 + H2O

Восст. окисл.

НОК ДМ

восст-ль Sº – 6ē = S+6 1

окисл-ль N+5 + ē = N+4 6

Sº + 6N+5 = S+6 + 6N+4

S + 6HNO3(конц) = Н2SO4 + 6NO2 + 2H2O.

в) Неметалл + H2SO4(конц) → кислота, в которой неметалл проявляет высшую степень окисления + SO2 +(Н2O); см. пример б).

Решение

P0 + H2S+6O4(конц) = Н3Р+5О4 + S+4O2 + H2O

Восст. окисл.

НОК ДМ

восст-ль P0 – 5ē = P+5 2

окисл-ль S+6 + 2ē = S+4 5

0 + 5S+6 = 2P+5 + 5S+4

2P + 5H2SO4(конц) = 2Н3РО4 + 5SO2 + 2H2O.

г) Металл + H2SO4(конц) → соль + (H2S, S, SO2)
(в зависимости от активности металла) + Н2О.

H2S выделится, если в реакцию вступает активный металл
(Li–Al),

S выделится, если в реакцию вступает металл средней активности (Mn–Рb),

SO2выделится, если в реакцию вступает малоактивный металл (стоящий в ряду стандартных электродных потенциалов после водорода).

Решение

Mg0 + H2S+6O4(конц) = Mg+2SO4 + H2S-2 + H2O.

восст. oкисл.

НОК ДМ

осст-ль Mg0 – 2ē = Mg+2 4

окисл-ль S+6 + 8ē = S-2 1

4Mg0 + S+6 = 4Mg+2 + S-2

Аналогично примеру (а) уравниваем реакцию:

4H2SO4(конц) + 4Mg + H2SO4(конц) = 4MgSО4 + H2S + 4H2O

4Mg + 5H2SO4(конц) = 4MgSО4 + H2S + 4H2O.

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ.

КОРРОЗИЯ МЕТАЛЛОВ.

УРОВЕНЬ В

1.а) Алюминиевый электрод погружен в 5∙10-4 М раствор сульфата алюминия. Вычислить значение электродного потенциала алюминия.

Дано: Металл – Al = 5∙10-4 моль/л Решение Электродный потенциал алюминия рассчитываем по уравнению Нернста: = +
–?

По табл. 11.1 определяем стандартный электродный потенциал алюминия:

= –1,67 В.

Записываем уравнение электродного процесса, протекающего на поверхности алюминиевого электрода в растворе соли:

Al – 3ē = Al3+.

n – число электронов, участвующих в электродном процессе.

Для данной реакции n равно заряду иона алюминия Al3+(n = 3). Рассчитываем концентрацию ионов алюминия в растворе Al2(SO4)3:

= ∙ α ∙ .

Разбавленный раствор Al2(SO4)3 – сильный электролит.

Следовательно, α = 1. По уравнению диссоциации Al2(SO4)3.

Al2(SO4)3 = 2Al3+ + 3SO

число ионов Al3+, образующихся при диссоциации одной молекулы Al2(SO4)3, равно 2.

Следовательно, = 2.

Тогда = 5∙10-4∙1∙2 = моль/л.

Рассчитываем электродный потенциал алюминиевого электрода:

= -1,67 + = –1,73 В.

Ответ: = –1,73 В.

б) Потенциал цинкового электрода, погруженного в раствор своей соли, равен –0,75 В. Вычислить концентрацию ионов цинка в растворе.

Дано: Металл – Zn = –0,75 В Решение Электродный потенциал цинка рассчитываем по уравнению Нернста: = + .
–?

Откуда:

=

По табл. 11.1 определяем стандартный электродный потенциал цинка:

= 0,76 В, n – равно заряду иона цинка Zn2+ (n = 2).

Тогда

= = 0,338.

= 100,339 моль/л = 2,18 моль/л

Ответ: = 2,18 моль/л.

Составить две схемы гальванических элементов (ГЭ), в одной из которых олово служило бы анодом, в другой – катодом. Для одной из них написать уравнения электродных процессов и суммарной токообразующей реакции. Вычислить значение стандартного напряжения ГЭ.

Решение

В гальваническом элементе анодом является более активный металл с меньшим алгебраическим значением электродного потенциала, катодом – менее активный металл с большим алгебраическим значением электродного потенциала.

По табл. 11.1 находим = –0,14 В.

а) Олово является анодом ГЭ.

В качестве катода можно выбрать любой металл с > .

Выбираем медь = + 0,34 В. В паре Sn–Cu олово будет являться анодом ГЭ, медь – катодом. Составляем схему ГЭ:

А(-) Sn │ Sn2+ ││ Cu2+ │ Cu(+)K

Или

А(-) Sn │ SnSO4 ││ CuSO4 │ Cu(+)K.

Уравнения электродных процессов:

НОК ДМ

На A(-) Sn – 2ē = Sn2+ 1 – окисление

На К(+) Cu2+ + 2ē = Cu 1 – восстановление

Sn + Cu2+ = Sn2+ + Cu – суммарное ионно-молекулярное уравнение токообразующей реакции;

Sn + CuSO4 = SnSO4 + Cu – суммарное молекулярное уравнение токообразующей реакции.

Рассчитываем стандартное напряжение ГЭ:

= = +0,34 – (–0,14) = 0,48 В.

б) Олово является катодом ГЭ.

В качестве анода ГЭ можно выбрать любой металл с < , кроме щелочных и щелочноземельных металлов, так как они реагируют с водой.

Выбираем магний = –2,37 В.



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 842; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.99.39 (0.007 с.)