ТОП 10:

Основные приемы детерминированного факторного анализа



Детерминированный факторный анализ – это методика исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т.е. когда результативный показатель представлен в виде произведения, частного или алгебраической суммы факторов.

При моделировании детерминированных факторных систем необходимо выполнять ряд требований:

1. Факторы, включаемые в модель, и сами модели должны иметь определенно выраженный характер, реально существовать, а не быть придуманными абстрактными величинами или явлениями.

2. Факторы, которые входят в систему, должны быть не только необходимыми элементами формулы, но и находиться в причинно-следственной связи с изучаемыми показателями.

3. Каждые показатели факторной модели должны быть количественно измеримыми, т.е. должны иметь единицу измерения и необходимую информационную обеспеченность.

4. Факторная модель должна обеспечивать возможность измерения влияния отдельных факторов, это означает, что в ней должна учитываться соразмерность измерений результативного и факторных показателей, а сумма влияния отдельных факторов должна равняться общему приросту результативного показателя.

Типы факторных моделей встречающихся в детерминированном анализе:

- аддитивные модели, используются в случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей;

- мультипликативные модели, применяются, когда результативный показатель представляет собой произведение нескольких факторов;

- кратные модели, применяются, когда результативный показатель получают делением одного факторного показателя на величину другого;

- смешанные (комбинированные) модели – сочетание в различных комбинациях предыдущих моделей.

Основные приемы детерминированного факторного анализа и сфера их применения систематизированы в виде таблице 2.1.

 

 

Таблица 2.1 – Область применения основных приемов детерминированного факторного анализа

Прием Модели
мультипликативные аддитивные кратные смешанные
Цепной подстановки + + + +
Индексный + - + -
Абсолютных разниц + - -
Относительных разниц + - -
Интегральный + - +
Логарифмирования + - - -

Методы элиминирования

Элиминировать– значит устранить, отклонить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, потом изменяются два, затем три и т.д. Это позволяет определить влияние каждого фактора на величину исследуемого показателя в отдельности. К методам элиминирования относятся способ цепной подстановки, индексный метод, способ абсолютных и способ относительных разниц.

Способ цепной подстановки. Данный способ является универсальным, так как используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных. Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, трех и т.д. факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или иного фактора позволяет элиминироваться от влияния всех факторов, кроме одного, и определить взаимодействие последнего на прирост результативного показателя.

Рассмотрим алгоритм расчета способом цепной подстановки для различных моделей:

Мультипликативная модель

Двухфакторная мультипликативная модель (Y = a ´ b):

; .

; ; .

.

Трехфакторная мультипликативная модель(Y = a ´ b ´ с):

; .

; ; ; .

.

Кратная модель

В кратных моделях (Y = a ÷ b) алгоритм расчета факторов на величину результативного показателя следующий:

; .

; ;

.

 

Смешанные модели

Мультипликативно-аддитивного типа (Y = a ´ (b – c)):

; ;

; ;

; ;

; .

 

Кратно-аддитивного типа ( ):

;

; ;

; .

 

Используя способ цепной подстановки, рекомендуется придерживаться определенной последовательности расчетов: в первую очередь нужно учитывать изменение количественных, а затем качественных показателей. Если же имеется несколько количественных и несколько качественных показателей, то сначала следует изменить величину факторов первого уровня подчинения, а потом более низкого.

Индексный метод. Индексный метод основан на относительных показателях динамики, пространственных сравнений, выполнения плана, выражающих отношение фактического уровня анализируемого показателя в отчетном периоде к его уровню в базисном периоде.

С помощью агрегатных индексов можно выявить влияние различных факторов на изменение уровня результативных показателей в мультипликативных и кратных моделях.

Рассмотрим алгоритм расчета индексного метода для мультипликативной модели.

 

; ; ; .

 

Способ абсолютных разниц. Как и способ цепной подстановки, данный способ применяется для расчета влияния факторов на прирост результативного показателя в детерминированном анализе, но только в мультипликативных и мультипликативно-аддитивных моделях: и . Особенно эффективно применяется данный способ в том случае, если исходные данные уже содержат абсолютные отклонения по факторным показателям.

При его использовании величина влияния факторов рассчитывается умножением абсолютного прироста исследуемого фактора на базовую (плановую) величину факторов, которые находятся справа от него, и на фактическую величину факторов, расположенных слева от него в модели.

Мультипликативная модель

Алгоритм расчета для мультипликативной факторной модели типа . Имеются плановые и фактические значения по каждому факторному показателю, а также их абсолютные отклонения:

 

; ; .

 

Изменение величины результативного показателя за счет каждого фактора:

; .

Смешанные модели

Алгоритм расчета факторов этим способом в смешанных моделях типа :

; ; .

 

Способ относительных разницприменяется для изменения влияния факторов на прирост результативного показателя только в мультипликативных моделях и мультипликативно-аддитивных моделях: . Он значительно проще цепных подстановок, что при определенных обстоятельствах делает его очень эффективным. Это касается тех случаев, когда исходные данные содержат уже определенные ранее относительные приросты факторных показателей в процентах или коэффициентах.

 

Мультипликативная модель

Алгоритм расчета влияния факторов на величину результативного показателя для мультипликативных моделей типа (Y = a ´ b ´ с).

Сначала рассчитываются относительные отклонения факторных показателей:

 

; ; .

 

Изменение результативного показателя за счет каждого фактора определяется следующим образом:

 

 

Способ относительных разниц удобно применять в тех случаях, когда требуется рассчитать влияние большого комплекса факторов (8-10 и более). В отличие от предыдущих способов значительно сокращается количество вычислений.

Интегральный метод

Элиминирование как способ детерминированного факторного анализа имеет существенный недостаток. При его использовании исходят из того, что факторы изменяются независимо друг от друга. На самом же деле они изменяются совместно, взаимосвязано и от этого взаимодействия получается дополнительный прирост результативного показателя, который при применении способов элиминирования присоединяется к одному из факторов, как правило, к последнему. В связи с этим величина влияния факторов на изменение результативного показателя меняется в зависимости от места, на которое поставлен тот или иной фактор в детерминированной модели.

Чтобы избавиться от этого недостатка, в детерминированном факторном анализе используется интегральный метод, который применяется для измерения влияния факторов в мультипликативных, кратных и смешанных моделях кратно-аддитивного вида .

Использование этого способа позволяет получить более точные результаты расчета влияния факторов по сравнению с методами элиминирования и избежать неоднозначной оценки влияния факторов потому, что в данном случае результаты не зависят от месторасположения факторов в модели, а дополнительный прирост результативного показателя, который образовался от взаимодействия факторов, раскладывается между ними поровну.

В интегральном методе используют следующие формулы для различных моделей:

Мультипликативные модели

Двуфакторная модель типа :

 

Трехфакторная модель типа :

 

Четырехфакторная модель типа :

Кратная модель

.







Последнее изменение этой страницы: 2016-04-18; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.204.191.31 (0.024 с.)