Поняття і властивості визначника n-го порядку 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Поняття і властивості визначника n-го порядку



На практичних заняттях було введено поняття визначника другого і третього порядків. Це були числа, отримані за певними законами з таких таблиць- матриць другого і третього порядків відповідно:

s w:space="720"/></w:sectPr></w:body></w:wordDocument>">

Визначник другого порядка – це число, що позначається і яке дорівнює алгебраїчній сумі , аналогічно визначник третього порядку:

Ми хочемо узагальнити це поняття, тобто отримати визначник -го порядку таким чином, що з нього при та отримати попереднє.

Аналіз обчислення визначників другого і третього порядків приводить до доцільності такого означення:

Означення. Визначником -го порядку, що відповідає матриці:

називається алгебраїчна сума доданків, кожний з яких є добутком елементів, взятих по одному з кожного рядка і кожного стовпця матриці, причому зі знаком "+", якщо підстановка складена з перших і других індексів, парна і зі знаком "–", якщо вона непарна.

Отже визначник -го порядку складається з доданків вигляду , де – кількість інверсій у перестановці α12,…,αn.

Для визначника вводять позначення:

Властивість 1. Визначник не зміниться, якщо його рядки зробити відповідними стовпцями.

Розглянемо визначник d.

 

 

Стверджується, що

Розглянемо загальний член визначника d:
(1) – загальний член d.
α12,…,αn - перестановка з 1,2,…,n
Запишемо член (1) в позначках ij.

(1)
Таким чином (1) є членом і визначника d1. З′ясуємо, з яким знаком (1) входить до визначника d1. Знак члена (1) в d визначається парністю підстановки

Знак (1) в d1 визначається парністю підстановки

Ці підстановки, взагалі кажучи, різні, але парності в них однакові, тому що загальна кількість інверсій верхньої і нижньої перестановок однакова, тому і знаки члена (1) в d і d1 однакові.

Це перетворення, при якому всі рядки стають відповідними стовбцями, називається транспонуванням.

Властивість 2. Якщо в визначнику поміняти місцями будь які 2 рядки, то знак визначника зміниться на протилежний.

Доведення за схемою властивості 1.

Насправді, нехай у визначнику міняються місцями i-ий та j-ий рядки, , а всі інші рядки залишаються на місці. Ми отримаємо визначник :

 

.

 

Якщо (1) є членом визначника , то всі його елементи і у визначнику залишаються, очевидно, в різних рядках і різних стовпцях. Таким чином, визначники d та d1 складаються з одних і тих же членів.

Члену (1) у визначнику відповідає підстановка (2),

а у визначнику - підстановка (3).

Підстановку (2) можна одержати з підстановки (1) однією транспозицією в верхньому рядку, тобто вона має протилежну парність. Звідси випливає, що всі члени визначника d входять до визначника d1 і відрізняються лише знаком.

Властивість 3. Якщо в визначнику є нульовий рядок, то визначник дорівнює 0.

Нехай усі елементи і-го рядка визначника є нулями

За означенням визначник n-го порядку це алгебраїчна сума n доданків, кожний з яких є добутком n елементів, узятих по одному з кожного рядка й кожного стовпця матриці і т.д. Отже, у кожний член визначника повинен увійти множником один елемент з і-ого рядка, тому в нашому випадку всі члени визначника дорівнюють нулю. Що й треба було довести.

Властивість 4. Якщо в визначнику є 2 рівних рядка, то визначник дорівнює 0.

Доведення. Нехай у визначнику d рівні між собою і-рядок і j=рядок

Нехай d = k

d1 – визначник d, в якому поміняли і з j рядок.

Тоді за властивістю 2:

d1=-k

Але насправді нічого не змінилось, оскільки, i та j рядки рівні

d1=d=k ⟹ -k=k

Звідси, 2k=0, k=0.

Властивість 5. Якщо всі елементи деякого рядка помножити на число r, то визначник зміниться в r разів.

Доведення за схемою властивості 1.

Цю ж властивість можна сформулювати у вигляді: якщо рядок визначника містить постійний множник, то його можна винести за знак визначника.

Розглянемо визначник d:

Нехай на r помножені всі елементи і-ого рядка. Кожний член визначника містить рівно один елемент із і-ого рядка, тому всілякий член отримує множник r, тобто сам визначник множиться на r.

Властивість 6. Якщо у визначнику є два пропорційні рядки, то визначник = 0.

Доведення проводиться з використанням властивості 5 і властивості 4.

Насправді, нехай елементи j-ого рядка визначника відмінюються від відповідних елементів і-ого рядка одним і тим самим множником r.

 

 

Виносячи спільний множник r із j-ого рядка за знак визначника, ми отримуємо визначник з двома однаковими рядками, який дорівнює нулю за властивістю 4.

Властивість 4 (а також властивість 3 при ) є, очевидно, окремим випадком властивості 6 (при r = 1 і r = 0).

Властивість 7. Якщо кожний елемент і-рядка визначників є сумою 2-ох доданків, то такий визначник можна подати як суму двох визначників, у яких всі рядки, за винятком і-ого такі ж, як у початковому. і-й рядок першого визначника складається з перших доданків, і-ий рядок другого визначника складається з других доданків.

 

 

Доведення за схемою доведення властивості 1.

Дійсно, всілякий член заданого визначника можна подати у вигляді:

Збираючи разом перші доданки цих сум (з тими ж знаками, які мали відповідні члени в заданому визначнику) ми отримаємо, очевидно, визначник n-го порядку, що відмінюється від заданого визначника лише тим, що в і-ому рядку замість елементів стоять елементи . Відповідно другі доданки складають визначник, в і-ому рядку якого стоять елементи .

Властивість 8. Якщо до і-ого рядка визначника додати j-ий рядок, в подумках помножений на деяке число, то визначник не зміниться.

Доведення. Нехай до і-го рядка визначника d додається j-ий рядок, помножений на k, тобто в новому визначнику всілякий елемент і-го рядка має вигляд . Тоді на підставі властивості 7 цей визначник дорівнює сумі двох визначників, з яких перший є d, а другий містить пропорційні рядки і тому дорівнює 0.

Властивість 9. Якщо в визначнику присутній рядок, що є лінійною комбінацією інших рядків, то визначник дорівнює 0.

Доведення.

Нехай, наприклад, і-ий рядок буде лінійною комбінацією s інших рядків

 

 

Застосовуючи властивість 7, ми подамо наш визначник у вигляді суми визначників, у кожному з яких і-ий рядок буде пропорційним до одного з інших рядків.

За властивістю 6 усі ці визначники дорівнюють нулю, дорівнює нулю, отже і заданий визначник теж.

Ця властивість є узагальненням властивості 6, причому вона дає найзагальніший випадок рівності визначника нулю.

Зауваження. Завдяки властивості 1 все, що було формульовано для рядків є правильним і для стовпців, тому властивість 1 називається властивістю рівноправності рядків і стовпців.



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 674; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.106.69 (0.093 с.)