Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Роль гормонов в регуляции обмена белков.
Содержание книги
- В поддержании гомеостаза холестерола в организме. Биохимия желчнокаменной болезни
- Тема 8. 3. Хиломикроны - транспортная форма экзогенных жиров
- Бета-Окисление жирных кислот. Последовательность реакций. Энергетическое значение.
- Механизмы биосинтеза жирных кислот. Регуляция этого процесса.
- Регуляция синтеза жирных кислот.
- Биосинтез жиров в печени и жировой ткани. Регуляция синтеза жиров
- Депонирование и мобилизация жиров в жировой ткани. Механизм регуляции активности липазы гормонами.
- Фосфолипиды, строение, биологическая роль.
- Холестерин, этапы биосинтеза, биологические функции, регуляция биосинтеза.
- Транспортные формы холестерина. Нарушения транспорта. Семейная гиперхолестеринемия. Атеросклероз.
- Причины и факторы риска развития атеросклероза
- Первичные эндогенные формы истощения
- Представления о биосинтезе фосфолипидов. Липотропные вещества.
- Связь между обменом белков и углеводов
- Влияние инсулина, глюкагона и адреналина на обмен жиров.
- Тема 9. 2. Переваривание белков в желудке и кишечнике, всасывание аминокислот
- Реакции трансаминирования, ферменты, их коферментная группа. Биологическое значение реакций. Определение аминотрансфераз с диагностической целью
- Окислительное дезаминирование аминокислот. Глутаматдегидрогеназа. Значение этой реакции.
- Непрямое дезаминирование аминокислот: последовательность реакций, ферменты, биологическое значение.
- Пути катаболизма безазотистого остатка аминокислот. Значение этого процесса.
- Тема 9. 5. Орнитиновый цикл и его биологическая роль
- Тема 9. 6. Гипераммониемия и ее причины
- Конечные продукты азотистого обмена. Источники аммиака в организме. Причины гипеаммониемии.
- Орнитиновый цикл и его биологическая роль
- Обмен фенилаланина и тирозина. Использование тирозина для синтеза катехоламинов, тироксина и меланинов. Распад тирозина.
- Роль гормонов в регуляции обмена белков.
- Катаболизм пуриновых нуклеотидов. Представления о биосинтезе пуриновых нуклеотидов. Подагра.
- Биосинтез и катаболизм пиримидиновых нуклеотидов. Регуляция синтеза.
- Место гормонов в регуляции метаболизма. Классификация гормонов по химическому строению.
- Тема 11. 3. Строение и биосинтез гормонов
- Механизм передачи гормонального сигнала в клетку. Рецепторы гормонов.
- Гормоны гипоталамуса, их биологическая роль.
- Регуляция обмена углеводов, жиров и аминокислот инсулином, глюкагоном, адреналином, кортизолом.
- Адреналин, химическая природа, биосинтез, роль в регуляции метаболизма.
- Кальций-фосфолипидный механизм
- Регуляция синтеза и секреции. Активируют: тиреолиберин, охлаждение (закаливание, обливание холодной водой); также
- Кортикостероиды, химическая природа, влияние на обмен веществ, регуляция биосинтеза.
- Противовоспалительное и иммунодепрессивное действие
- Биохимические нарушения при сахарном диабете. Механизмы развития диабетической комы.
- Гормональная регуляция обмена воды и электролитов. Механизм действия вазопрессина и альдостерона.
- Роль гормонов в регуляции фосфорно-кальциевого обмена. Причины гипо- и гиперкальциемии.
- Строение двух форм витамина D
- Половые гормоны, химическая природа, регуляция биосинтеза, влияние на обмен веществ.
- Регуляция синтеза и секреции
- Регуляция синтеза и секреции. Активируют: синтез эстрогенов – лютеинизирующий и фолликулостимулирующий гормоны
- Коллаген, особенности состава, строения и биосинтеза. Нарушения при дефиците витамина С.
- Гидроксилирование пролина и лизина. Роль витамина С
- Б. Особенности структуры и функции разных типов коллагенов
- Коллагены, образующие сетеподобные структуры
- Коллагены, образующие микрофибриллы
1. Для нормального функционирования многоклеточного организма необходима взаимосвязь между отдельными клетками, тканями и органами. Эту взаимосвязь осуществляют:
• нервная система (центральная и периферическая) через нервные импульсы и нейромедиаторы;
• эндокринная система через эндокринные железы и гормоны, которые синтезируются специализированными клетками этих желез, выделяются в кровь и транспортируются к различным органам и тканям;
• паракринная и аутокринная системы посредством различных соединений, которые секретируются в межклеточное пространство и взаимодействуют с рецепторами либо близлежащих клеток, либо той же клетки (простагландины, гормоны желудочно-кишечного тракта, гистамин и др.);
• иммунная система через специфические белки (цитокины, антитела).
2. Эндокринная система обеспечивает регуляцию и интеграцию метаболизма в разных тканях в ответ на изменения условий внешней и внутренней среды. Гормоны функционируют как химические посредники, переносящие информацию об этих изменениях в различные органы и ткани. Ответная реакция клетки на действие гормона определяется как химическим строением гормона, так и типом клетки, на которую направлено его действие. Гормоны присутствуют в крови в очень низкой концентрации, и их действие обычно кратковременно.
Это обусловлено, во-первых, регуляцией их синтеза и секреции и, во-вторых, высокой скоростью инактивации циркулирующих гормонов. Основные связи между нервной и эндокринной системами регуляции осуществляются с помощью специальных отделов мозга - гипоталамуса и гипофиза. В системе нейрогуморальной регуляции существует своя иерархия, вершиной которой является ЦНС и строгая последовательность протекания процессов.
3. Иерархия регуляторных систем. Системы регуляции обмена веществ и функций организма образуют три иерархических уровня (рис. 11.1).
Первый уровень - центральная нервная система. Нервные клетки получают сигналы, поступающие из внешней и внутренней среды, преобразуют их в форму нервного импульса, который в синапсе вызывает освобождение медиатора. Медиаторы вызывают изменения метаболизма в эффекторных клетках через внутриклеточные механизмы регуляции.
Второй уровень - эндокринная система - включает гипоталамус, гипофиз, периферические эндокринные железы, а также специализированные клетки некоторых органов и тканей (ЖКТ, адипоциты), синтезирующие гормоны и высвобождающие их в кровь при действии соответствующего стимула.
Третий уровень - внутриклеточный - составляют изменения метаболизма в пределах клетки или отдельного метаболического пути, происходящие в результате:
• изменения активности ферментов путем активации или ингибирования;
• изменения количества ферментов по механизму индукции или репрессии синтеза белков или изменения скорости их деградации;
• изменения скорости транспорта веществ через мембраны клеток. Синтез и секреция гормонов стимулируется внешними и внутренними
сигналами, поступающими в ЦНС. Эти сигналы по нервным связям поступают в гипоталамус, где стимулируют синтез пептидных гормонов (так называемых рилизинг-гормонов) - либеринов и статинов. Либерины и статины транспортируются в переднюю долю гипофиза, где стимулируют или тормозят синтез тропных гормонов. Тропные гормоны гипофиза стимулируют синтез и секрецию гормонов периферических эндокринных желез, которые поступают в общий кровоток. Некоторые гипоталамические гормоны сохраняются в задней доле гипофиза, откуда секретируются в кровь (вазопрессин, окситоцин).
Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус; синтез и секреция тропных гормонов подавляется гормонами периферических желез.
|