Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
ГЛАВА 11. Эвристическая классификация (I)
Содержание книги
- Использование квантора существования позволяет преобразовать термы с квантором общности в соответствии с определением
- Иными словами, это не тот случай, когда некоторый Объект X находится в комнате А и, следовательно, переменная имеет экзистенциальную подстановку.
- Если u и ф представляют две произвольные фразы, которые можно представить в конъюнктивной нормальной форме, и
- Поиск доказательства в системе резолюций
- Процедурная дедукция в системе PLANNER
- В следующем разделе мы кратко остановимся на системах, в которых была предпринята попытка устранить эти недостатки
- Обратите внимание на то, что если бы в теле процедуры отсутствовал предикат ввс, то программа очень быстро зациклилась.
- Occur)U, Exprl, 2), collect(U, Exprl, Expr2), isolate(U, Expr2, Ans).
- I) ни один Человек не является островом. (джон донн (john donne))
- Глава 9. Представление неопределенности знаний и данных
- В более общей форме правило байеса имеет вид
- Можно с уверенностью Т заключить, что пациент страдает заболеванием DI.
- Множество, определенное такой характеристической функцией, представляется формулой
- Которая после подстановки дает
- Какова вероятность того, что из полной колоды будет вытянута одна из старших карт (король, дама или валет).
- Преимущество использования такой программы — снижение трудоемкости процесса, поскольку перенос знаний от эксперта к системе осуществляется в один прием.
- В основу оболочки KADS положено пять базовых принципов.
- Оболочки CommonKADS и KASTUS
- Сопровождение и редактирование баз знаний с помощью программы teiresias
- В составе teiresias Имеются и средства, которые помогают оболочке emycin следить за поведением экспертной системы в процессе применения набора имеющихся правил.
- Графический интерфейс модели предметной области
- В модели предметной области можно выделить четыре основных аспекта, которые явились следствием применения онтологического анализа, как отмечалось в разделе 10. 1. 3.
- Эффективность программы OPAL
- Обсуждение проблем машинного обучения мы отложим до главы 20, поскольку это слишком сложный материал для той части книги, которую мы рассматриваем как вводную.
- Если: Имеется решение менее радикальное, чем
- ГЛАВА 11. Эвристическая классификация (I)
- Классификация задач экспертных систем
- Теперь посмотрим, как соотносится описанная ранее классификация экспертных систем с предложенной Кленси иерархической схемой операций.
- Общность эвристической классификации
- В разделе упражнений вы встретите набор правил на языке clips, которые соответствуют определению, сформулированному в рассматриваемом документе.
- Кленси утверждает, что его работа может следующим образом, повлиять на исследования в области экспертных систем.
- Эти правила соответствуют этапу эвристического сопоставления.
- Разработайте правило selection, которое выбирает вино с наивысшим рейтингом и предлагает его Пользователю.
- Ранее мы уже упоминали о таких особенностях mycin, как отказ от обратного прослеживания в пользу деструктивной модификации рабочей памяти и использование стратегии исчерпывающего поиска.
- При проектировании программ эвристической классификации, таких как MUD или mycin, процесс уточнения правил является, по существу, шестиэтапным.
- ТО существует солевое загрязнение.
- Использование коэффициентов уверенности в программе MORE
- Каждое из таких предположений основано на стремлении сохранить взаимную согласованность коэффициентов в правилах одного семейства.
- ЕСЛИ: 1) заражение — менингит,
- Кленси утверждает, что поведение neomicyn ближе к модели поведения человека при диагностировании, чем поведение mycin.
- Почему в системах, основанных на правилах, сложно выполнять обратное прослеживание на большую глубину.
- Формирование суждений на базе модели в системе internist
- Структурированные объекты в CENTAUR
- Каждый управляющий слот можно рассматривать как консеквентную часть правила, условная часть которого сопоставима с ситуацией, описанной компонентами прототипа
- Формирование суждений на базе модели в системе internist
- База знаний программы internist формируется следующим образом.
- Проблемы, обнаруженные в процессе эксплуатации системы INTERNIST
- Рабочая среда инженерии знаний TDE
- Что понимается под прототипом в системе centaur. Какие функции возлагаются на прототипы.
- Severe-restrictive-defect. Present
Классификация задач экспертных систем
Классификация методов решения проблем
Эвристическое сопоставление
Общность эвристической классификации
Классификация или конструирование?
Рекомендуемая литература
Упражнения
ГЛАВА 11. Эвристическая классификация (I)
Классификация задач экспертных систем
Классификация методов решения проблем
Классификация или конструирование?
Рекомендуемая литература
Упражнения
В предыдущей главе мы уже упоминали о том, что базовые компоненты экспертных систем, хорошо зарекомендовавшие себя на практике (машина логического вывода и подсистема представления знаний), могут быть использованы для построения аналогичных систем для других областей приложения. Так, архитектура оболочки EMYCIN явилась результатом дальнейшего развития принципов, положенных в основу ранней и узкоспециализированной системы MYCIN.
В этой главе мы рассмотрим вопросы применения тех методов решения проблем, которые используются на практике при построении экспертных систем разного назначения, и постараемся увязать характерные черты этих методов со спецификой областей применения. В идеальном случае хотелось бы получить ответы на следующие вопросы.
Можно ли классифицировать области применения экспертных систем на основе характеристик задач, решаемых в этой области?
Можно ли сформулировать хорошо дифференцированный набор методов решения проблем, которые приложимы для определенных классов областей применения?
Можно ли определить, какие стили представления знаний и правил логического вывода наиболее подходят для данного метода решения проблем?
Мы попытаемся дать ответы на эти вопросы, основываясь на том опыте построения экспертных систем, который накопило научное сообщество на сегодняшний день. Не следует ожидать, что эти ответы будут обладать исчерпывающей полнотой и четкой аргументацией, но, тем не менее, они представляют большой интерес как в теоретическом, так и в практическом плане. Если уж технология экспертных систем должна иметь солидный теоретический базис, то необходимо представлять себе, почему эта технология оказывается работоспособной при решении одних задач и неработоспособной при решении других. С практической точки зрения ответы на поставленные вопросы помогут разработчикам экспертных систем принять правильное решение и таким образом избавят их от крушения надежд и разочарования, которыми часто сопровождается ошибочный выбор. В этой главе читатель найдет следующий материал.
Сначала будет представлен критический обзор подходов к классификации задач экспертных систем, описанных в технической литературе.
Затем мы рассмотрим те методы решения проблем, которые в литературе объединены под общим названием эвристической классификации. Этим термином принято характеризовать поведение множества экспертных систем, ориентированных на выполнение таких задач, как диагноз и интерпретация данных.
В последних разделах будет проведено сравнение эвристической классификации с другими методами, пригодными для решения задач, оказавшихся не под силу эвристической классификации.
Противопоставление различных подходов, рассмотренное в заключительном разделе, в дальнейшем будет описано при более глубоком анализе различных методов в главах 12-15. В качестве примеров применения таких методов мы выбирали экспертные системы различного назначения, достаточно подробно описанные в литературе. Пользуясь такой методикой изложения, мы постараемся отыскать те более или менее общие схемы представления знаний и механизмы логического вывода, которые целесообразно применять для конкретных типов задач. В главах 18, 22 и 23 мы остановимся на более "экзотических" схемах и механизмах решения задач.
|