Каждое из таких предположений основано на стремлении сохранить взаимную согласованность коэффициентов в правилах одного семейства. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Каждое из таких предположений основано на стремлении сохранить взаимную согласованность коэффициентов в правилах одного семейства.



Опыт эксплуатации системы MORE

В одной из своих ранних работ, посвященных созданию системы MYCIN, Шортлифф обратил внимание на необходимость разработки такого механизма извлечения знаний, который помогал бы эксперту назначать порождающим правилам коэффициенты уверенности [Shortliffe, 1976]. В сборнике [Buchanan and Shortliffe, 1984, Chapter 10, Section 5] собрано множество статей, в которых обсуждается ряд вопросов, связанных с этой проблемой. В этих статьях, в частности, обсуждается, как добавлять новые правила в существующий набор и как модифицировать ранее сформулированные правила.

Тот подход, который использован в программе MORE, достаточно прозрачен и понятен. Но в этой программе совершенно не затрагивается вопрос о независимости значений коэффициентов, который был в свое время поднят Шортлиффом. В главе 6 мы видели, что применение теоремы Байеса требует, чтобы свидетельства в пользу гипотез были независимыми, если мы собираемся комбинировать их параметры с помощью простой мультипликативной схемы.

Шортлифф предложил сгруппировать зависимые свидетельства в одном правиле, а не распределять их по множеству и рассматривать такую группу свидетельств в качестве "суперсимптома". Оценку весомости этого суперсимптома можно сделать на основе аппроксимации конъюнкции весов индивидуальных свидетельств. В программе MORE это предложение не реализовано, но в ней имеется вся необходимая для этого информация, представленная в модели событий. Анализ функционирования системы подтвердил предположение, что при нарушении независимости свидетельств коэффициенты уверенности отклоняются в значительно большем диапазоне, чем вероятности (см. об этом в [Buchanan and Shortliffe, 1984, Chapter 11, Section 5]).

Кан обратил внимание на другие проблемы, обнаруженные при эксплуатации прототипа системы MORE.

Пользователи предпочли бы, чтобы программа MORE использовала каким-то образом модель событий для формирования предположительных значений коэффициентов и задавала меньше вопросов общего характера.

Такие концептуальные понятия, как гипотезы и симптомы, с трудом воспринимаются экспертами в большинстве предметных областей, связанных с промышленным производством, чьи знания очень важны для систем, ориентированных на диагностику неисправностей.

Стандартный алфавитно-цифровой интерфейс общения эксперта с системой показал свою полную непригодность даже для выполнения экспериментов с прототипом системы.

Последнее замечание еще раз подтверждает важность хорошо продуманного и удобного интерфейса для успешного внедрения экспертной системы. До тех пор, пока пользователь будет лишен возможности легко интерпретировать то, что он видит на экране, быстро отыскивать необходимую ему информацию, он не сможет понять, что именно делает система.

Привычный для всех современных пользователей графический интерфейс значительно повышает производительность работы с системой на всех стадиях ее развития.

Другой ряд проблем связан с тем, что программа MORE реализована на языке OPS5, а модель событий описывается в терминах сложных векторов, размещаемых в рабочей памяти. Такое представление плохо подходит для представления знаний о причинно-следственных отношениях, а потому при описании, модификации и сопровождении модели событий разработчикам пришлось столкнуться с большими сложностями. Здесь скорее подошло бы представление в виде структурированных объектов, которое было описано в главе 6.

За время, прошедшее после создания программы MORE, на свет появилось еще множество других программ извлечения знаний для последующего использования в экспертных системах, выполняющих эвристическую классификацию. Одна из таких программ — TDE — будет представлена в следующей главе

Совершенствование стратегий

Работа инженера по знаниям отнюдь не заканчивается после того, как эвристические знания будут представлены в виде исходного набора порождающих правил. И исследователи, и практики давно пришли к выводу, что процесс дальнейшего совершенствования базы знаний не уступает по сложности процессу создания ее первой версии. Существует довольно большой круг проблем, связанных как с обслуживанием большого набора правил, так и с дальнейшим уточнением их на базе опыта, полученного в процессе эксплуатации системы.

Только часть из этих проблем может быть решена с помощью таких инструментальных средств извлечения знаний, как система MORE. Создается впечатление, что некоторые аспекты этих проблем являются следствием применения подхода, базирующегося на правилах, а потому требуется определенное переосмысление способов организации набора правил. В этом разделе мы попытаемся провести краткий обзор существующих на сегодняшний день мнений на этот счет.

Уроки проекта GUIDON

В своей работе [Clancey, 1983] Кленси раскритиковал использование неструктурированного набора порождающих правил в экспертных системах, основываясь в основном на опыте адаптации системы MYCIN для учебных целей в ходе выполнения проекта GUIDON. Описание этого проекта можно найти в работе [Clancey, 1987, а]. Главный аргумент Кленси состоит в том, что единообразный синтаксис правил в виде выражений "если... то" скрывает тот факт, что такие правила часто выполняют совершенно различные функции и соответственно должны конструироваться по-разному. При нынешней постановке вопроса определенные структурные и стратегические решения, касающиеся представления знаний о предметной области, присутствуют в наборе правил неявно, а потому недоступны для коррекции или анализа в явном виде.

Мы уже видели, что порождающие правила в обобщенной форме могут быть интерпретированы следующим образом: если предпосылки Р1 и... и Рт верны, то выполнить действия Q1 и... и Qn

Порядок перечисления предпосылок Рi не имеет значения, поскольку Р1 ^ P2 эквивалентно P2^P1 в любой стандартной логике. Однако порядок перечисления предпосылок влияет на процедурную интерпретацию таких правил, поскольку он материализуется в логическом программировании. Различные варианты упорядочения в совокупности могут породить совершенно различные виды пространства поиска, которые будут анализироваться по-разному, как мы это уже видели в главе 8. Аналогично, порядок применения правил для достижения определенной цели будет влиять на порядок формирования подцелей. Можно с уверенностью утверждать, что такой механизм разрешения конфликтов, при котором первыми будут выполняться наиболее предпочтительные правила, в большинстве случаев позволит намного сократить процесс поиска.

Проблема состоит в том, что критерии, по которым можно было бы упорядочить правила и логические фразы, представлены в наборе правил в неявном виде. Знания о том, какое правило следует применить первым и в каком порядке анализировать члены совокупности предпосылок в правиле, являются, по существу, метазнаниями, т.е. знаниями о том, как применять знания. Вряд ли кто-нибудь будет спорить с тем, что такие знания имеют важнейшее значение для правильного функционирования экспертной системы, а получить их от эксперта и представить в удобном виде в программе чрезвычайно трудно.

Кленси утверждал, что система, основанная на правилах, нуждается в эпистемологической оболочке, которая каким-то образом придает смысл специфическим знаниям о предметной области. Другими словами, правила логического вывода, имеющие отношение к определенной предметной области, часто оказываются неявно включены в более абстрактные знания. Лучший способ объяснить эту мысль -- воспользоваться примером, описанным Кленси. Рассмотрим следующее правило:



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 32; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.89.24 (0.008 с.)