Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
При проектировании программ эвристической классификации, таких как MUD или mycin, процесс уточнения правил является, по существу, шестиэтапным.
Содержание книги
- Глава 9. Представление неопределенности знаний и данных
- В более общей форме правило байеса имеет вид
- Можно с уверенностью Т заключить, что пациент страдает заболеванием DI.
- Множество, определенное такой характеристической функцией, представляется формулой
- Которая после подстановки дает
- Какова вероятность того, что из полной колоды будет вытянута одна из старших карт (король, дама или валет).
- Преимущество использования такой программы — снижение трудоемкости процесса, поскольку перенос знаний от эксперта к системе осуществляется в один прием.
- В основу оболочки KADS положено пять базовых принципов.
- Оболочки CommonKADS и KASTUS
- Сопровождение и редактирование баз знаний с помощью программы teiresias
- В составе teiresias Имеются и средства, которые помогают оболочке emycin следить за поведением экспертной системы в процессе применения набора имеющихся правил.
- Графический интерфейс модели предметной области
- В модели предметной области можно выделить четыре основных аспекта, которые явились следствием применения онтологического анализа, как отмечалось в разделе 10. 1. 3.
- Эффективность программы OPAL
- Обсуждение проблем машинного обучения мы отложим до главы 20, поскольку это слишком сложный материал для той части книги, которую мы рассматриваем как вводную.
- Если: Имеется решение менее радикальное, чем
- ГЛАВА 11. Эвристическая классификация (I)
- Классификация задач экспертных систем
- Теперь посмотрим, как соотносится описанная ранее классификация экспертных систем с предложенной Кленси иерархической схемой операций.
- Общность эвристической классификации
- В разделе упражнений вы встретите набор правил на языке clips, которые соответствуют определению, сформулированному в рассматриваемом документе.
- Кленси утверждает, что его работа может следующим образом, повлиять на исследования в области экспертных систем.
- Эти правила соответствуют этапу эвристического сопоставления.
- Разработайте правило selection, которое выбирает вино с наивысшим рейтингом и предлагает его Пользователю.
- Ранее мы уже упоминали о таких особенностях mycin, как отказ от обратного прослеживания в пользу деструктивной модификации рабочей памяти и использование стратегии исчерпывающего поиска.
- При проектировании программ эвристической классификации, таких как MUD или mycin, процесс уточнения правил является, по существу, шестиэтапным.
- ТО существует солевое загрязнение.
- Использование коэффициентов уверенности в программе MORE
- Каждое из таких предположений основано на стремлении сохранить взаимную согласованность коэффициентов в правилах одного семейства.
- ЕСЛИ: 1) заражение — менингит,
- Кленси утверждает, что поведение neomicyn ближе к модели поведения человека при диагностировании, чем поведение mycin.
- Почему в системах, основанных на правилах, сложно выполнять обратное прослеживание на большую глубину.
- Формирование суждений на базе модели в системе internist
- Структурированные объекты в CENTAUR
- Каждый управляющий слот можно рассматривать как консеквентную часть правила, условная часть которого сопоставима с ситуацией, описанной компонентами прототипа
- Формирование суждений на базе модели в системе internist
- База знаний программы internist формируется следующим образом.
- Проблемы, обнаруженные в процессе эксплуатации системы INTERNIST
- Рабочая среда инженерии знаний TDE
- Что понимается под прототипом в системе centaur. Какие функции возлагаются на прототипы.
- Severe-restrictive-defect. Present
- Области применения методов конструктивного решения проблем
- Программа R1 разбивает задачу конфигурирования на шесть подзадач, каждая из которых, в свою очередь, может быть разбита на более мелкие подзадачи.
- Стратегии разрешения конфликтов LEX и МЕА
- Формирование суждений с учетом ограничений: метод Match
- Извлечение знаний в системе R1/XCON
- Включить в систему НМД RA60,
- Совершенствование системы XCON
- В чем преимущество использования более явного представления стратегии, реализованного при модернизации системы XCON.
- Оператор resume во многом похож на оператор focus. Отличие состоит в том, что он не формирует новые задачи, А старается выявить ранее приостановленные и повторно запустить их на выполнение.
(1) Эксперт сообщает инженеру по знаниям, какие правила нужно добавить или изменить.
(2) Инженер по знаниям вносит изменения в базу знаний системы.
(3) Инженер по знаниям запускает на выполнение программу, вводит данные, которые ранее уже обрабатывались прежним набором правил, и проверяет таким образом полноту нового набора.
(4) Если при обработке новым набором правил ранее проверенных исходных данных возникают какие-либо проблемы, инженер по знаниям обсуждает способы их преодоления с экспертом и далее повторяется этап 1.
(5) Эксперт запускает систему и вводит новый вариант данных.
(6) Если при обработке нового варианта не возникает никаких проблем, можно считать очередной сеанс внесения изменений в правила завершенным. В противном случае повторяется вся процедура начиная с 1-го этапа.
Как было показано в главе 10, именно такой базовый алгоритм внесения изменений в базу знаний используется в системе MYCIN, а для повышения эффективности выполнения отдельных этапов применяются разнообразные инструментальные средства, в частности язык сокращенного описания правил из состава оболочки EMYCIN, библиотека тестовых наборов данных, средства выполнения тестовых примеров в пакетном режиме и т.п.
Кан и его коллеги пошли по другому пути [Kahn et al, 1985], [Kahn, 1988]. Они применили программу извлечения знаний MORE, которая использует для обновления базы знаний MUD как знания о предметной области, так и знания о стратегии решения проблем. Как и OPAL, программа MORE располагает моделью предметной области, в которой представлены основные отношения между базовыми концепциями. Эти знания используются для организации опроса экспертов, обнаружения ошибок при назначении коэффициентов доверия и для генерации правил, на основании которых выполняется эвристическая классификация.
В программе MORE модель предметной области состоит из следующих компонентов:
симптомы, т.е. явления, которые можно наблюдать в процессе проведения диагноза; появление этих явлений и должна объяснить система;
атрибуты, которые являются средством детализации симптомов, например резкое возрастание или снижение значения какого-либо параметра;
события, которые являются возможным следствием симптомов и таким образом могут рассматриваться в качестве гипотез;
фоновые условия, позволяющие судить о большей или меньшей вероятности наличия связи между обнаруженными симптомами и теми или иными гипотетическими причинами их появления;
тестовые процедуры, которые можно использовать для обнаружения наличия или отсутствия упомянутых выше фоновых условий;
условия выполнения тестовых процедур, способные повлиять на точность результатов тестирования.
Эти знания организованы в виде сети, в которой явно обозначены связи между симптомами и возможными причинами их появления, а также связи между условиями и теми состояниями или событиями, на которые эти условия могут повлиять. На рис. 12.1 представлен фрагмент сети представления модели предметной области, в которой используется система MUD.
Загрязнение сланцами и приток воды — это гипотезы, объясняющие появление четырех симптомов: понижение давления внутри пласта, повышение доли твердых включений, повышение уровня содержания неэмульсионной воды и повышение вязкости. Все они являются свойствами вязких и жидких пластов, на которых может сказаться загрязнение теми или иными компонентами при выполнении буровых работ. Обратите внимание, что на этой схеме некоторые линии причинно-следственных связей параметризиро-ваны степенью влияния на симптом. ТСМ — это тест синевы метилена, который проверяет повышение количества твердых включений в вязких пластах, а используется масляная эмульсия — фоновое условие, которое может сказаться на связи между притоком воды и повышением уровня содержания неэмульсионной воды.
Рис. 12.1. Фрагмент модели предметной области, которая используется в программе MORE
|