Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Можно с уверенностью Т заключить, что пациент страдает заболеванием DI.
Содержание книги
- Анализ адекватности ассоциативных сетей
- Из сказанного выше ясно, что первоначальные виды формализмов ассоциативных сетей страдают минимум двумя недостатками.
- Значения по умолчанию и демоны
- Если отсутствует любая информация о параметрах четырехугольника, не выполнять никаких вычислений.
- Система инициализируется командой (reset). Теперь можно активизировать демон, послав ему сообщение
- Подводя итог всему сказанному выше об ассоциативных сетях и фреймах, отметим, что в большинстве предлагаемых структур сетей не удалось дать четкий ответ на два важных вопроса.
- Для этого вам понадобится сначала внести изменения в определение класса square.
- Формирование объекта класса на языке clips
- Скомбинировать их таким образом, чтобы получить желаемый эффект.
- Множественное наследование в CLOS и clips
- Наложение методов в CLOS и clips
- В CLOS поддерживаются три базовых метакласса.
- Объекты в основном являются средствами реализации вычислений.
- Поиск доказательства в системе резолюций
- Использование квантора существования позволяет преобразовать термы с квантором общности в соответствии с определением
- Иными словами, это не тот случай, когда некоторый Объект X находится в комнате А и, следовательно, переменная имеет экзистенциальную подстановку.
- Если u и ф представляют две произвольные фразы, которые можно представить в конъюнктивной нормальной форме, и
- Поиск доказательства в системе резолюций
- Процедурная дедукция в системе PLANNER
- В следующем разделе мы кратко остановимся на системах, в которых была предпринята попытка устранить эти недостатки
- Обратите внимание на то, что если бы в теле процедуры отсутствовал предикат ввс, то программа очень быстро зациклилась.
- Occur)U, Exprl, 2), collect(U, Exprl, Expr2), isolate(U, Expr2, Ans).
- I) ни один Человек не является островом. (джон донн (john donne))
- Глава 9. Представление неопределенности знаний и данных
- В более общей форме правило байеса имеет вид
- Можно с уверенностью Т заключить, что пациент страдает заболеванием DI.
- Множество, определенное такой характеристической функцией, представляется формулой
- Которая после подстановки дает
- Какова вероятность того, что из полной колоды будет вытянута одна из старших карт (король, дама или валет).
- Преимущество использования такой программы — снижение трудоемкости процесса, поскольку перенос знаний от эксперта к системе осуществляется в один прием.
- В основу оболочки KADS положено пять базовых принципов.
- Оболочки CommonKADS и KASTUS
- Сопровождение и редактирование баз знаний с помощью программы teiresias
- В составе teiresias Имеются и средства, которые помогают оболочке emycin следить за поведением экспертной системы в процессе применения набора имеющихся правил.
- Графический интерфейс модели предметной области
- В модели предметной области можно выделить четыре основных аспекта, которые явились следствием применения онтологического анализа, как отмечалось в разделе 10. 1. 3.
- Эффективность программы OPAL
- Обсуждение проблем машинного обучения мы отложим до главы 20, поскольку это слишком сложный материал для той части книги, которую мы рассматриваем как вводную.
- Если: Имеется решение менее радикальное, чем
- ГЛАВА 11. Эвристическая классификация (I)
- Классификация задач экспертных систем
- Теперь посмотрим, как соотносится описанная ранее классификация экспертных систем с предложенной Кленси иерархической схемой операций.
- Общность эвристической классификации
- В разделе упражнений вы встретите набор правил на языке clips, которые соответствуют определению, сформулированному в рассматриваемом документе.
- Кленси утверждает, что его работа может следующим образом, повлиять на исследования в области экспертных систем.
- Эти правила соответствуют этапу эвристического сопоставления.
- Разработайте правило selection, которое выбирает вино с наивысшим рейтингом и предлагает его Пользователю.
- Ранее мы уже упоминали о таких особенностях mycin, как отказ от обратного прослеживания в пользу деструктивной модификации рабочей памяти и использование стратегии исчерпывающего поиска.
- При проектировании программ эвристической классификации, таких как MUD или mycin, процесс уточнения правил является, по существу, шестиэтапным.
- ТО существует солевое загрязнение.
Коэффициент-уверенности tпринимает значения в диапазоне [-1,+ 1]. Если т = +1, то это означает, что при соблюдении всех оговоренных условий составитель правила абсолютно уверен в правильности заключения di, а если т = -1, то значит, что при соблюдении всех оговоренных условий существует абсолютная уверенность в ошибочности этого заключения. Отличные от +1 положительные значения коэффициента указывают на степень уверенности в правильности заключения di, а отрицательные значения — на степень уверенности в его ошибочности.
Основная идея состоит в том, чтобы с помощью порождающих правил такого вида попытаться заменить вычисление P(di | s1 ^... ^ sk) приближенной оценкой и таким образом сымитировать процесс принятия решения экспертом-человеком. Как было показано в главе 3, результаты применения правил такого вида связываются с коэффициентом уверенности окончательного заключения с помощью CF(a) — коэффициент уверенности в достоверности значения параметра а, а дополнительные условия t1 ^... ^ tm представляют фоновые знания, которые ограничивают применение конкретного правила. Чаще всего оказывается, что эти условия могут быть интерпретированы значениями "истина" или "ложь", т.е. соответствующие коэффициенты принимают значение +1 или -1. Таким образом, отличные от единицы значения коэффициентов характеризуют только симптомы s1,..., sk. Роль фоновых знаний состоит в том, чтобы разрешить или запретить применение правила в данном конкретном случае. Пусть, например, имеется диагностическое правило, связывающее появление болей в брюшной полости с возможной беременностью. Применение этого правила блокируется фоновым знанием, что оно справедливо только по отношению к пациентам-женщинам.
Бучанан и Шортлифф утверждают, что, строго говоря, применение правила Байеса в любом случае не позволяет получить точные значения, поскольку используемые условные вероятности субъективны [Buchanan and Shortliffe, 1984, Chapter 11]. Как мы уже видели, это основной аргумент против применения вероятностного подхода. Однако такая аргументация предполагает объективистскую интерпретацию понятия вероятности, т.е. предполагается, что "правильные" значения все же существуют, но мы не можем их получить, а раз так, то и правило Байеса нельзя использовать. Этот аргумент имеет явно схоластический оттенок, поскольку любая экспертиза, проводимая инженером по знаниям, совершенно очевидно сводится к представлению тех знаний о предметной области, которыми обладает человек-эксперт (эти знания, конечно же, являются субъективными), а не к воссозданию абсолютно адекватной модели мира. С точки зрения теории представляется, что целесообразнее использовать математически корректный формализм к неточным данным, чем формализм, который математически некорректен, к тем же неточным данным.
Перл обратил внимание на важное практическое достоинство подхода, основанного на правилах [Pearl, 1988, р.5]. Вычисление коэффициентов уверенности заключения имеет явно выраженный модульный характер, поскольку не нужно принимать во внимание никакой иной информации, кроме той, что имеется в данном правиле. При этом не имеет никакого значения, как именно получены коэффициенты уверенности, характеризующие исходные данные.
При построении экспертных систем часто используется эта особенность. Полагается, что для всех правил, имеющих дело с определенным параметром, предпосылки каждого правила логически независимы. Анализируя систему MYCIN, Шортлифф посоветовал сгруппировать все зависимые признаки в единое правило, а не распределять их по множеству правил (см., например, [Buchanan and Shortliffe, 1984, p. 229]).
Пусть, например, существует зависимость между признаками Е1 и E2- Шортлифф рекомендует сгруппировать их в единое правило если E1 и Е2, то приходим к заключению Н с уверенностью т, а не распределять по двум правилам если E1, то приходим к заключению Н с уверенностью t, если Е2, то приходим к заключению Н с уверенностью t.
В основе этой рекомендации лежит одно из следствий теории вероятностей, гласящее, что Р(Н | E1, Е2) не может быть простой функцией от Р(Н | Е1) и Р(Н | Е2).
|