Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
ТО существует солевое загрязнение.Содержание книги
Поиск на нашем сайте
Программа MORE работает с семействами правил следующим образом. Когда программа "изучает" новые условия, имеющие отношение к некоторой гипотезе, она создает новое правило с единственным условием в левой части и добавляет его в семейство правил этой гипотезы. Если же новое условие имеет отношение и к другим правилам, ранее включенным в это же семейство, то в них также добавляется это условие. (Если новое условие не совместимо с другими, указанными в одном из правил семейства, то такое правило не изменяется.) Правила, в которые добавляется новое условие, называются составными правилами (constituent rules). О них мы поговорим в следующем разделе, когда будем рассматривать коэффициенты уверенности. Приведенный пример применения стратегии отчетливости симптомов показывает, как с помощью той или иной стратегии извлечения знаний выполняется уточнение сформулированных правил. Стратегия отчетливости симптомов используется тогда, когда в семействе не оказывается правил с отчетливо выраженным положительным коэффициентом доверия. Приведенное выше исходное правило было слишком общим, а потому ему нельзя было назначить высокий коэффициент доверия. Поскольку на начальном этапе это правило является единственным в семействе, для его уточнения и активизируется стратегия отчетливости симптомов. Чаще всего, после того как формулируются другие правила семейства, в которых специфицируются различные фоновые условия, такие общие правила удаляются из семейства. Такое удаление можно рассматривать как стремление отдавать предпочтение специализированным правилам, а не более общим, на чем основаны некоторые стратегии разрешения конфликтов. Стратегия установление связи между симптомами и условиями используется в том случае, если в семействе отсутствуют правила с отчетливо выраженным отрицательным коэффициентом доверия. В таких случаях программа MORE предпринимает попытку выявить те фоновые условия, которые позволяют более отчетливо проявиться симптому какой-либо определенной гипотезы. Знание условий, при которых повышается вероятность проявления симптома, позволяет компоненту решения задач отбрасывать часть гипотез, для которых наиболее показательные симптомы отсутствуют. Другие стратегии — дифференциация, дифференциация путей и разделение пути — используются для создания новых семейств правил. Стратегия дифференциации задейст-вуется в тех случаях, когда программа обнаруживает пару гипотез, не имеющих отличающихся симптомов. В этом случае на схеме модели событий, аналогичной приведенной на рис. 12.1, возникает ситуация, когда для пары гипотез Н1 и H2 не оказывается ни одного симптома, который имел бы связь с Н1 но не имел связи с H2, или наоборот. Используя стратегию дифференциации, программа MORE пытается выяснить у эксперта, какой еще симптом можно добавить в набор и с его помощью устранить неоднозначность. Этот новый симптом добавляется затем в модель событий и связывается с определенными гипотезами. Таким образом модель уточняется до тех пор, пока не появится возможность сформировать отдельные семейства правил для гипотез Н1 и H2 Стратегия дифференциации путей выбирается в том случае, если в модели событий некоторый симптом оказывается связан с двумя разными гипотезами. В этой ситуации программа MORE пытается выяснить у эксперта, существует ли какое-либо промежуточное событие, которое, с одной стороны, может послужить причиной появления такого симптома, а с другой, может возникнуть только в том случае, когда правдоподобна одна из "конкурирующих" гипотез и неправдоподобна другая. Включение такого события в модель поможет разделить существующие объяснения появления такого симптома, а соответственно и уточнить связанные с ними правила. К стратегии разделения пути программа обращается в том случае, если в семействе правил некоторой гипотезы обнаруживается отсутствие правила, которое связало бы высокое значение отрицательного коэффициента доверия с отсутствием какого-либо симптома. В этой ситуации программа MORE пытается выяснить у эксперта, существует ли какое-либо промежуточное событие, причиной которого могла бы быть данная гипотеза. Если такое событие существует, то тот факт, что оно не наблюдается, может с большей очевидностью свидетельствовать против данной гипотезы, чем тот факт, что симптом не наблюдается. В результате можно создать новое семейство правил для гипотезы. Остальные стратегии — частотное упорядочение условий, дифференциация тестирования и установление связи между тестированием и условиями его проведения — активизируются в случаях, когда в семействе обнаруживается отсутствие правил с достаточно высоким или достаточно низким значением положительного или отрицательного коэффициента доверия. В таком случае правила нельзя считать достаточно информативными для решения проблемы классификации. Получение от эксперта информации о новых тестовых процедурах и условиях их выполнения, а также оценок априорной вероятности гипотез при различных фоновых условиях позволит либо увеличить, либо уменьшить коэффициенты в правилах, связывающих симптомы и гипотезы. Информация первого типа используется для корректировки правил оценки степени достоверности симптомов, а информация второго типа — для корректировки правил оценки степени правдоподобности гипотез.
|
||||
Последнее изменение этой страницы: 2021-07-18; просмотров: 42; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.157.241 (0.007 с.) |