![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вещественные графические на естественном на математическомСодержание книги
Поиск на нашем сайте
языке языке» Все многообразие моделей можно представить в виде двух видов моделей: схематизированных и знаковых. «Схематизированные модели, в свою очередь, делятся на вещественные и графические в зависимости от того, какое действие они сопровождают. Вещественные (или предметные) модели текстовых задач обеспечивают физическое действие с предметами. Они могут сопровождаться какими-либо предметами (пуговицами, спичками, бумажными полосками и т.д.), могут быть представлены с помощью разного рода инсценировок сюжета задач. К этому виду моделей причисляют и мысленное воссоздание реальной ситуации, описанной в задаче, в виде представлений». «Графические модели используются, как правило, для обобщённого, схематического воссоздания ситуации задачи. К графическим моделям следует отнести следующие виды моделей: 1) рисунок; 2) условный рисунок; 3) чертёж; 4) схематичный чертёж (или просто схема)». Приведём примеры использования перечисленных моделей на примере конкретной текстовой задачи: «Лида нарисовала 4 домика, а Вова на 3 домика больше. Сколько домиков нарисовал Вова?» Рисунок в качестве графической модели этой задачи может иметь следующий вид:
Условный рисунок может выглядеть следующим образом: Л.
В.
Чертёж как графическая модель должен быть выполнен при помощи чертёжных инструментов и с соблюдением заданных отношений: Схематический чертёж (схема) может быть выполнен следующим образом:
4 д. Л. 3 д. В. ? «Знаковые модели могут быть выполнены как на естественном языке, так и на математическом языке. К знаковым моделям, выполненным на естественном языке, можно отнести краткую запись задачи, таблицы». Л. – 4 д. В. –?, на 3 д. больше, чем Таблица как вид знаковой модели используется главным образом тогда, когда в задаче имеется несколько взаимосвязанных величин, каждая из которых задана одним или несколькими значениями. Например, можно воспользоваться таблицей при анализе следующей текстовой задачи: «Два грузовика перевозили 77 тонн груза, сделав одинаковое число рейсов. Сколько тонн груза перевёз каждый грузовик, если один грузовик перевозил за рейс 3 т, а другой – 4 т?»
Знаковыми моделями текстовых задач, выполненными на математическом языке, являются: выражение, уравнение, система уравнений, запись решения задачи по действиям. Поскольку на этих моделях происходит решение задачи, их называют решающими моделями. Остальные модели, все схематизированные и знаковые, выполненные на естественном языке, - это вспомогательные модели, которые обеспечивают переход от текста задачи к математической модели. Для большинства текстовых задач приходится строить различные вспомогательные модели. С одной стороны, эти модели представляют собой результат анализа задачи, но с другой - построение таких моделей организует и направляет детальный и глубокий анализ задачи. Для эффективного обучения моделированию необходимо соблюдать следующие условия: 1) все математические понятия, используемые при решении задач, должны изучаться с помощью моделей; 2) должна проводиться работа по усвоению знаково-символического языка, на котором строится модель (при этом ученик должен осознавать значение каждого элемента модели, осуществляя переход от реальности (предметной модели) к модели, и наоборот); 3) необходимый этап обучения - освоение моделей тех отношений, которые рассматриваются в задачах, т.е. осознание сути отношения, которое раскрывается в задаче; 4) чтобы самостоятельно решать задачи, ученик должен освоить различные виды моделей, научиться выбирать модель, соответствующую предложенной задаче, и переходить от одной модели к другой. Для овладения умением моделировать возможно использование следующих методических приёмов (могут использоваться для всех видов моделей): а) воспроизведение текста задачи по модели; б) составление задачи по модели; в) выбор среди предложенных моделей той, что соответствует данной задаче; г) выбор среди предложенных задач той, что соответствует данной модели; д) анализ уже построенной модели; е) изменение модели в соответствии с требованием; ж) запись решения по модели; з) выстраивание модели по решению; и) выбор решения, соответствующего модели; к) нахождение ошибок в предложенной модели; л) определение по модели всех арифметических способов решения данной задачи.
Таким образом, моделирование при решении текстовых задач может использоваться как приём алгоритмизации учебной деятельности учащихся, а изображение моделей может использоваться как внешние опоры организации мыслительной деятельности.
|
||||||||||||||
Последнее изменение этой страницы: 2021-04-05; просмотров: 338; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.83.69 (0.009 с.) |