Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Гамк - ергическая нейромедиаторная система и физиологически активные вещества, нарушающие её функционирование↑ Стр 1 из 17Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Министерства здравоохранения Российской Федерации Факультет военного обучения
ГАМК - ЕРГИЧЕСКАЯ НЕЙРОМЕДИАТОРНАЯ СИСТЕМА И ФИЗИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА, НАРУШАЮЩИЕ ЕЁ ФУНКЦИОНИРОВАНИЕ
Учебное пособие «Рекомендуется Учебно-методическим объединением по медицинскому и фармацевтическому образованию вузов России в качестве учебного пособия для студентов медицинских вузов»
Москва
Авторы: Бабенко Олег Васильевич – начальник Факультета военного обучения Московской медицинской академии им. И.М. Сеченова, кандидат медицинских наук, доцент, полковник медицинской службы Гладких Вадим Дмитриевич – профессор кафедры «Медицинской профилактики и защиты» Факультета военного обучения Московской медицинской академии им. И.М. Сеченова, доктор медицинских наук, полковник медицинской службы Кирьянов Владимир Владимирович – начальник учебной части – заместитель начальника кафедры «Медицинской профилактики и защиты» Факультета военного обучения Московской медицинской академии им. И.М. Сеченова, подполковник медицинской службы
ГАМК – ергическая нейромедиаторная система и физиологически активные вещества, нарушающие её функционирование /Под ред. О.В. Бабенко. - М.: ММА им. И.М. Сеченова, 2004. - с. В настоящем учебном пособии изложены вопросы метаболизма гамма-аминомасляной кислоты (ГАМК) как основного медиатора торможения нервной системы. С учётом современных представлений морфо-функциональной организации ГАМК-ергической нейромедиаторной системы, рассматриваются патогенетические особенности токсического действия физиологически активных веществ, нарушающих её функционирование. Обсуждаются принципы терапии острых отравлений ГАМК-антагонистами. Пособие предназначено для студентов Факультетов военного обучения, проходящих обучение по программе кафедры «Медицинской профилактики и защиты».
Рекомендуется Учебно-методическим объединением по медицинскому и фармацевтическому образованию вузов России в качестве учебного пособия для студентов факультетов военного обучения медицинских ВУЗов.
СОДЕРЖАНИЕ Введение Принятые сокращения Глава 1 ОБЩИЕ ВОПРОСЫ НЕРВНОЙ РЕГУЛЯЦИИ 1.1.Межклеточные взаимодействия – основа регуляции 1.2.Особенности нервной регуляции Глава 2 ГАММА – АМИНОМАСЛЯНАЯ КИСЛОТА – МЕДИАТОР ТОРМОЖЕНИЯ 2.1. Роль и место ГАМК в организме 2.2. Этапы метаболизма ГАМК 2.3. Биосинтез и катаболизм ГАМК 2.4. Депонирование, экзоцитоз и обратный захват ГАМК 2.5. ГАМК - зависимая мембрана и рецепция ГАМК 2.6. Классификация ГАМК - рецепторов 2.6.1. Структурно-функциональные особенности ГАМКА – рецепторов 2.6.2. Структурно-функциональные особенности ГАМКС – рецепторов 2.6.3. Структурно-функциональные особенности ГАМКВ – рецепторов 2.7. Виды ГАМК – ергического торможения Глава 3 ФИЗИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА, НАРУШАЮЩИЕ ФУНКЦИОНИРОВАНИЕ ГАМК - ЕРГИЧЕСКОЙ НЕЙРОМЕДИАТОРНОЙ СИСТЕМЫ 3.1. Физиологически активные вещества, нарушающие синтез и депонирование ГАМК 3.2 Физиологически активные вещества, нарушающие процессы экзоцитоза ГАМК 3.3 Физиологически активные вещества, нарушающие процессы обратного захвата и катаболизма ГАМК 3.4 Физиологически активные вещества, нарушающие процессы рецепции ГАМК 3.4.1. Конкурентные эффекторы ГАМК 3.4.2. Неконкурентные эффекторы ГАМК Глава 4 Заключение Терминологический словарь Рекомендуемая литература
ВВЕДЕНИЕ
Цель данного раздела курса - ознакомить студентов с вопросами токсикологии конвульсантов, опосредующих свою активность посредством нарушения функционирования ГАМК - ергической нейромедиаторной системы. Известно огромное количество химических соединений природного и синтетического происхождения, способных вызывать развитие судорожного синдрома у человека и экспериментальных животных. В одних случаях судорожная активность является неспецифическим проявлением токсического действия. В других, - токсиканты действуют селективно. Последние относятся к физиологически активным веществам (ФАВ) судорожного действия. При отравлении конвульсантами могут возникать клонические (коразол, цикутотоксин), клонико-тонические (физостигмин, фосфороорганические яды) и тонические (стрихнин) судороги.
Несмотря на многообразие механизмов, посредством которых нейротропные ФАВ вызывают судорожную реакцию, все они могут быть отнесены либо к гиперактивации процессов возбуждения, либо угнетению процесов торможения. Тормозные процессы в нервной системе осуществляются посредством пресинаптических и постсинаптических механизмов. В обоих случаях реализуется действие специфических нейромедиаторных систем мозга. Основным нейромедиатором торможения является g - аминомаслянная кислота (ГАМК). Идентифицированная около пятидесяти лет тому назад как нейромедиатор, ГАМК привлекает к себе пристальное внимание исследователей в связи с исключительно важной ролью в осуществлении интегративных функций нервной системы. Использование современных методов исследований и новейших технологий позволило в последние годы достичь определенных успехов в понимании морфо-функциональных особенностей ГАМК – ергической нейромедиаторной системы. В то же время, обобщённая структурно-функциональная «синаптическая модель мозга», казалось бы, логично выстроенная, все еще далека от совершенства в плане описания тормозных процессов ЦНС. В связи с этим, одной из кардинальных задач современной нейробиологии является детальное выяснение механизмов изменений синаптической передачи в тормозных нейронах в условиях различного функционирования организма. С этой целью активно проводятся исследования как субъединичного состава молекулярных рецепторов ГАМК, так и биохимических каскадов, запускаемых при их модуляции. ФАВ, модулирующие активность ГАМК – ергической нейромедиаторной системы, незаменимы при изучении структуры и функции ГАМК-ергической нейротрансмиссии. Обладая широким спектром физиологической активности, они широко используются в качестве «фармакологических зондов». Их использование в научных исследованиях обеспечило определённый прогресс в нейрофармакологии анксиолитиков, снотворных, противосудорожных средств и других фармакологических препаратов. Понимание механизмов функционирования, знание «уязвимых» участков ГАМК-ергической нейропередачи является отправной точкой для уточнения патогенеза различных заболеваний, выявления новых ФАВ (как лекарственных препаратов, так и токсикантов) с заданными свойствами. Вопросы метаболизма ГАМК и возможности её антиметаболизма составляют содержание настоящего учебного пособия. Знание этих вопросов является необходимой научной базой для подготовки квалифицированных специалистов лечебно-профилактического профиля.
ПРИНЯТЫЕ СОКРАЩЕНИЯ АДЦ - аденилатциклаза АМФ - аденозинмонофосфат АОУК - аминооксиуксусная кисота АРГ - аргинин АТФ - аденозинтрифосфат БЗД - 5-арилбенз-1,4-диазепины БЦГ - бициклогептан (норборнан) - БЦО - бициклические эфиры ортокарбоновых кислот БЦОБ - бициклоортобензоат БЦОК - бициклоортокарбоксилат БЦФ - бициклические эфиры кислот фосфора (4-алкил-БЦФ) ВЗМО - высшая занятая молекулярная орбиталь ВПСП - возбудимый постсинаптический потенциал
ГАМК (GABA) - гамма-аминомасляная кислота ГАМКа(в,с) - подтипы рецепторов ГАМК ГАМКа РКК - ГАМК-рецепторно-канальный комплекс (ГАМК-бензодиазепин-хлор - ионный комплекс) ГАМК-Т - ГАМК-трансфераза ГДК (GAD) - глутаматдекарбоксилаза ГЛИ - глицин ГЛУ - глутаминовая кислота ГМФ - гуанозинмонофосфат ГОМК - гамма-оксимасляная кислота ГТФ - гуанозинтрифосфат ГУЦ - гуанилатциклаза ГЭБ - гематоэнцефалический барьер ДВС - синдром диссеминированного внутрисосудистого свёртывания крови ДСТА - дисульфатетраазаадамантан КРБ - b-карболин ЛИЗ - лизин М - медиатор МАО - моноаминооксидаза Мб - метаболит МСП - модулятор структурной перестройки НСМО - низшая свободная молекулярная орбиталь ПКТ - пикротоксинин ПЛ - пиридоксаль ПЛК - пиридоксаль-киназа ПЛФ - пиридоксальфосфат Р - рецептор ССАД - сукцинатсемиальдегид ТПСП - тормозной постсинаптический потенциал ФАВ - физиологически активное вещество Ф - фермент ФДЭ - фосфодиэстераза ХИК - хлор-ионный канал ХИН - хлор-ионный насос ХИФ - хлор-ионофор ц-АМФ - цикло-аденозинмонофосфат ц-ГМФ - цикло-гуанозинмонофосфат ЦИС - цистеин ЦНС - центральная нервная система Э - эффектор ЭЭГ - электроэнцефалография САСА - цис-аминокротоновая кислота DE - эффективная доза DC - конвульсивная (судорожная) доза DL - летальная (смертельная доза) GAT - электрогенные транспортёры ГАМК, осуществляющие её реаптейк ТРMPA - 1,2,5,6- тетрагидропиридин-4-метилфосфиновая кислота TBOB - третбутилбициклоортобензоат TBPO - третбутилбициклофосфат TBPS - третбутилбициклофосфоротионат g - ГАМК gЛ - ГАМК-литик gМ - ГАМК-миметик gР - ГАМК-рецептор ОБЩИЕ ВОПРОСЫ НЕРВНОЙ РЕГУЛЯЦИИ
ГАМК создает физиологически адекватный фон для нейрохимической организации регуляторных процессов как центральной, так и периферической нервной системы. Функционирование гомеостатических механизмов на организменном уровне тесно связано с поддержанием постоянства концентрации ГАМК в тканях мозга, которое обуславливает сбалансированность процессов возбуждения и торможения в нервных клетках. Снижение активности ГАМК-ергических механизмов сопровождается развитием дисстресса, инсомнии, тревожно-фобических и агрессивных реакций, судорожных состояний; приводит к нарушению ряда когнитивных функций. Повышение активности ГАМК-эргическрой системы провоцирует развитие депрессии, шизофрении, паркинсонизма. Экспериментальные и клинические исследования последних лет позволяют полагать, что формирование (и развитие) той или иной патологии обусловлено как нарушениями центральных ГАМК-ергических механизмов, так и нарушениями ГАМК-ергической нейротрансмиссии периферической нервной системы. Более того, ГАМК выступает не только как нейротрансмиттер, но и как паракринный эффектор, регулирующий различные физиологические механизмы на периферии.
Несомненно, что метаболизм ГАМК имеет первостепенное значение для жизнедеятельности. Нарушения метаболизма ГАМК опасны для организма в связи с возможными извращениями процессов регуляции в тканях головного мозга и последующим искажением нормальных физиологических реакций организма.
Этапы метаболизма ГАМК. Малоспецифичный для тканей мозга биосинтез ГАМК иногда реализуется в клетках отдельных тканей в связи с функционированием ряда аминотрансфераз, контролирующих переаминирование при катаболизме различных a-аминокислот и a-кетокислот, например: В частности, к числу таких малоспецифичных процессов относится и переаминирование с участием глутаминовой (ГЛУ) и кетоглутаровой кислот, а также различных полифункциональных альдегидов, в том числе гамма-оксомасляной кислоты (янтарного полуальдегида). И именно в этом последнем случае имеет место равновесное образование ГАМК: Такое равновесное образование ГАМК, реализующееся под контролем малоспецифичной ГАМК-трансаминазы, получило название «ГАМК-шунт» (см.2.3). Естественно, что равновесие «ГАМК-шунта» будет сдвинуто в ту или иную сторону в зависимости от избытка какого-либо из реагентов этой системы. Однако, оказалось, что ни один из четырех реагентов системы "ГАМК-шунт" (в том числе ГЛУ и ГАМК) не способен преодолевать гематоэнцефалический барьер (ГЭБ), в связи с чем их экзогенное вмешательство в нейрональный метаболизм ГАМК (при отсутствии патологии) оказывается практически невозможным. Однако в условиях церебральной патологии реагенты. «ГАМК-шунта» могут преодолевать ГБЭ; в частности, ГАМК способна проникать в верхние отделы промежуточного мозга. В связи с этим, при некоторых сосудистых заболеваниях головного мозга (сопровождающихся нарушением внимания, памяти, речи), при систематических головокружениях и головных болях, а также после инсульта и некоторых травм мозга рекомендовано экзогенное введение ГАМК. Начиная с 70-х годов, ГАМК стала использоваться в терапевтических и профилактических целях; коммерческие названия разных фармакопейных форм ГАМК: гаммалон, ганеврин, аминалон. Биосинтез и катаболизм ГАМК
В нервной ткани ГАМК образуется путем декарбоксилирования глютамата под влиянием энзима (КФ, 4.1.1.15), чаще называемого L-глутамат- 1-декарбоксилазой (ГДК;GAD) или декарбоксилазой глутаминовой кислоты (ДГК). ГДК является протеидом гексамерного типа с молекулярной массой около 90000 и оптимумом рН=7,0. Кофермент ГДК строго доказан - им является пиридоксаль-5-фосфат (ПЛФ), который поступает в ЦНС с кровотоком, а в организм вообще - в качестве основного компонента витамина В6: Кофермент обратимо связан с апоферментом (полипептидным фрагментом) за счет конденсации альдегидной группы ПЛФ с w-аминогруппой лизинового фрагмента полипептида (ЛИЗ). Одновременно с этим имеет место и дополнительное связывание кофермента и апофермента за счет электростатического взаимодействия фосфатной группировки ПЛФ с аргининовыми фрагментами полипептида (АРГ), а также (предположительно) фенольного гидроксила ПЛФ с атомом тяжелого металла (главным образом Fе+++), ковалентно связанного с меркаптогруппами цистеиновых фрагментов полипептида (ЦИС).
ГДК характеризуется исключительной субстратной специфичностью: фермент in vivo контролирует декарбоксилирование только L-ГЛУ и репрессируется только самим метаболитом, то есть ГАМК. Репрессорная способность ГАМК, проявляется посредством использования «стандартного» механизма гормональной регуляции. То есть, если ГДК рассматривать как внутренний структурный элемент какого-то определенного участка мембраны синаптосомы; внешним элементом этого же участка мембраны является синапторецептор ГАМК (gРС). При избытке ГАМК в нейрональной среде имеет место ее равновесная рецепция на ГАМК-зависимых синапторецепторах, сопровождающаяся структурной перестройкой этого участка мембраны. В результате такой перестройки из разобщенных элементов мембраны формируется единый структурный блок ГАМК-[синапторецептор ГАМК]. Глутаминовая кислота является основным источником синтеза ГАМК в тканях мозга; синтез ГАМК из путресцина, спермидина и пирролидона имеет второстепенное значение. Её концентрация в мозговой ткани достигает 10 мкМ/г ткани. Предполагается, что около 8-10% глутамата может превращатьтся по альтернативному (по отношению к его участию в цикле трикарбоновых кислот) пути с образованием ГАМК. Данные, характеризующие локализацию ГДК (обнаружена только в нейронах, высвобождающих ГАМК), свидетельствуют о том, что основная функция ГАМК-шунта не связана с метаболизмом глюкозы. Источником веществ-предшественников глютамата является цикл Кребса (рис.2.2). Рис.2.2. Образование и окисление глутамата в головном мозге. 1 – глутаматдегидрогеназа, 2 – аспартатаминотрансфераза, 3 – аланинаминотрансфераза, 4 - тирозинаминотрансфераза, 5 – трансаминаза ГАМК.
ГДК является ключевым ферментом, лимитирующий скорость синтенза ГАМК. Существуют две основные изоформы глутаматдекарбоксилазы: GAD67 и GAD65. GAD67 распределена во всей цитоплазме нейронов, a GAD65 в основном локализована в пресинаптических терминалях ГАМК-ергических интернейронов. Экспрессия последнего фермента существенно меняется в зависимости от уровня активности нейрона, что указывает на его особую значимость в регуляции ГАМК-ергической передачи. GAD67 имеет высокое сродство к пиридоксальфосфату, и поэтому может быть активированной постоянно. GAD65 имеет низкое сродство к пиридоксальфосфату и её активность регулируется доступностью кофактора. Характерно, что мутантные мыши, (у которых отсутствует GAD65) при нормальном уровне ГАМК, более чувствительны к судорогам. Катаболизм ГАМК осуществляется митохондриальным энзимом К.Ф,2.6.1.19, иначе называемым ГАМК-трансаминазой (ГАМК-Т), превращающим аминокислоту в сукцинатсемиальдегид (ССАД), который в свою очередь, окисляется дегидрогеназой сукцинатсемиальдегида до янтарной кислоты с последующей утилизацией в цикле Кребса (рис.2.3.).
Рис.2.3. Схема обмена ГАМК в ЦНС ЦТК - цикл трикарбоновых кислот; ГК - глутаминовая кислота; ДГК - декарбоксилаза глутаминовой кислоты; ГАМК-Т - ГАМК-трансаминаза; ССАД – сукцинатсемиальдегид
Синтез и депонирование ГАМК происходят, по-видимому, в разных компартментах клетки. Шунт ГАМК представляет собой мостик между двумя этими компартментами, в одном из которых (в нервных окончаниях) ГАМК синтезируется, а после выделения деградирует в компартментах глиальных клеток.
Высвобождение ГАМК в синаптическую щель протекает в соответствии с общими закономерностями высвобождения нейромедиаторов: экзоцитоз реализуется когда распространяющийся внутринейронно биохемоэлектрический импульс достигает окончания нейрона, где размещены синаптические везикулы с депонированной в них ГАМК. Непосредственно предшествующим экзоцитозу актом является формирование неспецифического кальций-калий-ионного канала. ГАМК при этом выполняет функцию модулятора экзоцитоза: когда её концентрация в синаптическом пространстве достигает определённого «критического» уровня, включаются механизмы прекращения экзоцитоза и одновременной трансформации кальций-калиевого канала в кальций-калиевый насос.
Рис. 2.4. Принципиальная схема экзоцитоза ГАМК (g): А. Функционирование ионных каналов. Б. Условия экзоцитоза. В. Одна из "сцен" экзоцитоза.
Экзоцитоз фактически начинается с момента достижения биохемоэлектрическим импульсом пресинаптической мембраны и формирования в ней кальций-калий-ионного канала (рис.2.4.). Сквозь этот канал по закону пассивной диффузии (см. 1.1) в нейрональную среду начинает поступать поток ионов Са++, а из нейрона в синаптическую щель — регенеративный поток ионов К+; при этом, градиент ионов Na+ остается неизменным. По мере увеличения в нейрональной среде концентрации ионов Са++, а в синаптическом пространстве концентрации ионов К+ при остром дефиците в окончании нейрона ионов Nа+ экзоцитоз ускоряется. Скорость экзоцитоза достигает максимума, когда концентрации ионов составляют: [K+]синапс=0,04-0,05 эВ и [Са++]нейрон=0,0009-0,001 эВ. Когда же концентрация ионов Са++ достигает уровня 0,001-0,005 эВ, то экзоцитоз ГАМК частично тормозится. При превышении же уровня 0,01-0,015 эВ Са++—экзоциитоз прекращается полностью. Этот эффект объясняется реализацией принципа обратной связи: ГАМК (как и многие другие медиаторы) выполняет функции модулятора экзоцитоза. Это означает, что, когда концентрация ГАМК в синаптическом пространстве достигает определенного («критического») уровня, то имеет место разновесная рецепция медиатора на пресинаптической мембране, благодаря чему «включаются» механизмы, приводящие к прекращению экзоцитоза ГАМК и одновременно к трансформации кальций-калий-ионного канала в соответствующий насос. Такой насос обеспечивает метаболический перенос ионов кальция и калия в обратных направлениях (Са++ — из нейрона, К+ — в нейрон) с восстановлением исходных градиентов концентраций этих ионов. Роль ионов кальция заключается в стимуляции процессов фосфорилирования белков, а следовательно- в последующем слиянии мембран синаптических пузырьков с пресинаптической мембраной. Эти эффекты кальция опосредованы особым белком- синапсином I, локализованным на поверхности везикул. Весь цикл рассмотренных эффектов завершается за весьма короткое время около 0,03 с. и затем - все механизмы пресинаптической мембраны вновь готовы к следующему акту экзоцитоза. Следует отметить, что высвобождение ГАМК возможно как в виде мультимолекулярных квантов (что происходит при слиянии синаптических везикул с плазматичесчкой мембраной), так и в виде постоянной неквантовой утечки медиатора из окончания аксонов в состоянии покоя (см. 2.7). После высвобождения ГАМК в синаптическую щель, помимо взаимодействия нейромедиатора с соответствующим рецептором, происходит ее захват электрогенными транспортерами. Транспортёры, которые переносят нейромедиаторы в нервное окончание, отличаются от тех, которые транспортируют медиатор в синаптические везикулы. В настоящее время идентифицировано три таких транспортера (GAT1, GAT2 и GAT3), локализующихся как в астроцитах, так и в самих нейронах. Эти транспортеры различаются спецификой клеточной и региональной локализации. Так, например, GAT1 и GAT3 широко представлены в различных отделах мозга (показательно, что фармакологический профиль глиальных и нейрональных транспортёров ГАМК различен); GAT2 представлен в периферических тканях: сердце, печень, почки и т. д. Поскольку транспорт является электрогенным, анион аминокислоты переносится вместе с двумя катионами натрия и одним анионом хлора. Большая часть выделившейся в синаптическую щель ГАМК удаляется оттуда посредством высокоафинного Na+-зависимого активного захвата как нервными окончаниями, так и клетками глии. Каждая функциональная группа транспортёра связана с определённой белковой молекулой (или с их семейством). Большинство из них имеют до 12 трансмембранных сегментов (доменов) и образуют канало-подобные структуры. Для «работы» транспортёров необходимы внеклеточные ионы натрия и хлора, которые транспортируются одновременно с медиатором.
Считается, что быстрые тормозные постсинаптические токи (ТПСТ) опосредованны ионотропными рецепторами ГАМК, расположенными непосредственно в пределах активной зоны; медленное тоническое ГАМК-опосредованное торможение обеспечивается внесинаптическими ионотропными рецепторами ГАМК. Фазное торможение нейронов определяется дискретным выбросом в синаптичекую щель такого количества ГАМК, которое создаёт высокие концентрации нейромедиатора и эффективно воздействует на постсинаптические ГАМК-рецепторы. Тоническое торможение связано с постоянной слабой активацией ГАМК-рецепторов. Роль тонического ГАМК-опосредованного тока состоит в поддержании определенного значения потенциала на мембране и соответствующей модуляции возбудимости клетки. Другой функцией тонического торможения, вероятно, является шунтирование фазных пре- и постсинаптических трансмембранных токов при развитии потенциалов действия. Шунтирование быстрых токов происходит из-за того, что тоническая проводимость, связанная с наличием открытых каналов ГАМК-рецепторов, снижает сопротивление мембраны. Повышение электрической проводимости (уменьшение сопротивления) мембраны приводит к падению амплитуды потенциала действия, поступающего в пресинаптический участок аксона, уменьшая тем самым вход Са2+ и снижая вероятность выброса медиатора. Механизмы тонического ГАМК-ергического торможения изучены недостаточно полно. Согласно одной из гипотез, постоянная составляющая ГАМК-ергического тока представляет собой суммацию спонтанных ТПСТ, возникающих в ответ на спонтанный, не индуцированный пресинаптическим импульсом, выброс ГАМК. Согласно другой, - тонический ГАМК-ергический ток возникает за счет диффузии ГАМК во внесинаптическое пространство (в результате «перелива») и последующей активации внесинаптических рецепторов этого трансмиттера, свойства которых отличны от свойств синаптических рецепторов. Функция внесинаптических ГАМК-рецепторов, по всей видимости, заключается в детектировании внеклеточной концентрации ГАМК и поддержании соответствующего уровня тонического торможения (рис.2.6.). Помимо молекул ГАМК, покидающих синаптическую щель, определенную роль в повышении внеклеточной концентрации ГАМК (следовательно, и в тоническом ГАМК-опосредованном торможении) может играть функционирование ГАМК-транспортеров в обратном направлении, высвобождение ГАМК астроцитами и снижение активности ГАМК-транаминазы. Существует точка зрения, что происхождение ГАМК-ергического тонического тока связано со спонтанным (без участия нейротрансмиттера) открытием каналов ГАМК-рецепторов. Если этот (без предварительного высвобождения агониста и воздействия на рецептор) процесс действительно может происходить, то конкурентные антагонисты ГАМК (например, SR95531) не должны оказывать влияния на тонический ток, а неконкурентные блокаторы ГАМК-рецепторов (такие, как пикротоксин) будут подавлять тонический ток. Кроме того, в рамках рассматриваемой гипотезы повышение внеклеточной концентрации ГАМК не должно усиливать тонического торможения. Не исключена возможность существования двух компонентов тонического тока: зависящего от внеклеточной концентрации ГАМК и не зависящего, (опосредованного спонтанным открыванием ГАМК-ергических каналов). Вышеописанные типы торможения определенным образом задействованы в процессах эпилептогенеза. Так при моделировании эпилепсии на животных фиксируется гибель только определённых видов интернейронов; отмечается снижение интенсивности дендритного, но не соматического торможения. Аппликация каината повышает эффективность ГАМК-ергического торможения в интернейронах, но снижает интенсивность такого влияния на пирамидные клетки. Важно отметить, что все случаи снижения ритма биосинтеза ГАМК. приводящие к постепенному истощению запаса этого медиатора, и как следствие. - к последующим извращениям нервной регуляции, характеризуются наличием скрытого периода. Депрессия, возникающая при отравлениях сублетальными дозами рассматриваемых ФАВ, оказывается относительно устойчивой - продолжается десятки часов. Противоположный феномен - ускорение нормального ритма биосинтеза ГАМК в принципе невозможен, так как производительность биосинтеза в норме строго лимитирована количеством регулирующего этот процесс фермента (ГДК). Однако возрастание уровня ГАМК в нейроне иногда наблюдается вследствие увеличения в тканях ЦНС производительности «ГАМК-шунта», при введении экзогенного глутамина. Однако этот феномен не сопровождается существенным нарушением нервной регуляции по той причине, что при достижении в нейрональной среде определённого уровня ГАМК реализуется его способность к репрессии активности ГДК. К тому же, как только содержание ГАМК в нейрональной среде достигает критического уровня, имеет место депонирование нейромедиатора в синаптические везикулы. Возможность экзогенного влияния на характер и механизм депонирования ГАМК до конца не изучен (см.2.4). Пока неизвестно ни одного соединения, которое бы in vivo выступало в роли специфичного активатора или ингибитора депонирования ГАМК. Известно лишь, что депонирование ускоряется в присутствии ионов хлора, достигая максимума при концентрации 0.05 М С1-. Кроме того, опытами in vitro показано, что депонирование ГАМК тормозится резерпином и некоторыми производными фенотиазина и дибензазенина. в частности, аминазином и имипрамином.
Диагностика столбняка основана на фиксации одновременно нескольких клинических признаков (обильное потоотделение, тризм, сардоническая улыбка, нисходящее распространение ригидности, рефлекторная возбудимость и гипертермия) и результатах иммунохимической реакции крови. Идентификация тетаноспазмина в различных пробах проводится иммунными методами; неспецифическая индикация возможна посредством классических аналитических реакций на белки. Дезактивация тетаноспазмина осуществляется с использованием щелочей, растворов веществ окислительно-хлорирующего действия, высоких температур (при 80-100°С). Лечение столбняка - комплексное (симптоматическая терапия сочетается с Высокая летальность, трудности ранней диагностики и сложность организации системы мероприятий по защите и противодействию, обусловливает возможность использования экзотоксинов столбняка в качестве смертоносных химических агентов, например, в средствах микстовых поражений. Таким образом, предполагается возможность взаимодействия блокаторов ХИК как со специфическим участком связывания внутри канала с последующей его закупоркой, так и с участком связывания вблизи канала и дальнейшими конформационными изменениями постсинаптической мембраны, сопровождающимися нарушением кинетики ионофора. Считается, что даже для сходных по химической структуре соединений имеет место гетерогенность участков связывания. В обзорах, обобщающих данные по биологической активности непрямых ГАМК-антагонистов (И.В. Мартынов, В.И. Фетисов, В.Б. Соколов «Бициклические ортоэфиры кислот фосфора» 1989; А.И. Головко, С.И. Головко. С.Ю Зефиров, Г.А. Софронов «Токсикология ГАМК-литиков»1996) подчеркивается, что наиболее токсичными синтетическими блокаторами хлорионофоров являются трет-бутил-БЦФ-ат (DL.50 б.м.= 0,038 мг/кг); трет-бутил-цианофенил (DL50 б.м.=0,06 мг/кг) и экзо-цис-5,6-дихлор,-2,2-дициано-3.3 -бис(трифторметил), иначе называемый «бициклогептан» или «норборнан» (DL50собаки=0,045 мг/кг). Бициклогептан (БЦГ) в наномолярных концентрациях способен угнетать стимулируемый ГАМК захват радиоактивного хлора и тормозить специфическое связывание 35S-TBPS и ТВОВ; по степени аффинности к белку ионофора значительно превосходит трет-БЦФ-ат, ДСТА, пикротоксин (IC.50 соответственно 46.72.700 и 5000 нМ). Токсическое действие данных соединений проявляется клонико-тоническими судорогами в экспериментах на различных видах ЛЖ. Для бициклофосфатов и бициклоортобензоатов характерно стремительное развитие интоксикации и гибель в течение 1-30 минут, для БЦГ, - отсроченное развитие симптоматики и гибель в течение нескольких суток. Отличаясь высоким сродством к специфическому участку связывания хлорионофора, БЦГ вызывает развитие судорожных пароксизмов при блокаде не менее половины хлор-ионных каналов ЦНС. При этом отмечается преимущественное ингибирование ХИК ГАМКА-РКК в стриатуме и мозжечке, в то время как во фронтальной коре плотность хлор-ионофоров остается в пределах исходных показателей. Профилактика и купирование судорожного синдрома «конвульсантами клеточной структуры» связаны с определенными трудностями (Головко А.И., Головко С.И. с соавт. 1996). Проведенные биохимические и радиолигандные исследования БЦФ-атов и БЦГ выявили общность их механизма действия, что позволяет отнести их к непрямым антагонистам ГАМКА-РКК. Данные соединения, так же как и пикротоксинин, линдан, в период судорожной активности вызывают значительное снижение уровня ц-АМФ и увеличение уровня ц-ГМФ в мозжечке. В то же время. БЦГ, в отличие от БЦФ-атов, ДСТА. пикротоксина, является необратимым селективным ингибитором ХИК ГАМКА-РКК. Наряду с БЦГ. необратимыми ингибиторами ХИК ГАМКА-РКК являются также пара- и меча- изотиоцианатные аналоги третбутилбициклоортобензоата и фотоафинные лиганды хлорионофора триоксабициклооктановой структуры
Клиническая картина проявления судорожного симптомокомплекса в условиях хронического отравления блокаторами ГАМК-зависимых хлор-ионных каналов характеризуется более выраженным психо-вегетативным сопровождением и стёртостью фазности течения интоксикации. Дисбаланс тормозных и возбуждающих процессов, нарушение интегративной деятельности мозговых структур вследствие нарушения ГАМК-ергических механизмов тормозного контроля в стрианигропаллидарной системе и формирование генератора патологически усиленного возбуждения в стриатум определяет избирательный физиологический эффект. Проявлением неспецифических защитных механизмов является токсический стресс, протекающий в условиях нарушения модуляторного влияния ГАМК на сегментарную и рассогласования функционирования эрготропных и трофотропных отделов надсегментарного аппарата вегетативной нервной системы. Лидирующим патогенетическим механизмом является гипоксия. В результате реализации специфических и неспецифических патогенетических механизмов, в результате подавления активности физиологических систем мозга и соответствующих механизмов гомеостаза происходит стабилизация патологического процесса, то есть формирование устойчивого патологического состояния. Совокупность кардиореспираторных нарушений и проявлений судорожного синдрома, замыкающихся в «порочный круг», формирует типовые патологические процессы (гипоксию, шок, кому), приводящие к гибели. Перевод на более низкий информационно-энергетический уровень функционирования ЦНС, в ряде случаев, обеспечивает мобилизацию энергетических и пластических резервов нервной системы и определяет сохранение жизни. Углубление представлений относительно функционирования ГАМК-ергической нейромедиаторной системы, достигнутое в последние годы, позволяет ставить вопрос о возможных путях модуляции ГАМК-ергических синаптических процессов посредством использования не только традиционных эффекторов ГАМК-рецепторно-канального комплекса (барбитураты, бензодиазепины), но и разрабатываемх селективных агонистов ГАМК, воздействующих на определённые подтипы субъединиц ГАМК –БД- рецепторно-канального комплекса (см.2.6.). В последнем случае повышается противосудорожная активность и уменьшается вероятность развития побочных эффектов, связанных с седатацией, миорелаксаций, когнитивными нарушениями тех же бензодиазепинов. Определённые надежды связывают и с направлением экспериментальной терапии, ориентирующимся на увеличение концентрации ГАМК в синаптической щели посредством блокады её обратного захвата и ингибирования активности ГАМК-трансаминазы. Что касается полипрагмазии, то здесь необходимо учитывать, что совместное действие средств специфической терапии характеризуется суммацией и взаимопотенцированием как терапевтического, так и побочного эффектов. И, в этой связи, принципиально важным является введение в схему купирования судорожных состояний препаратов, воздействующих на неспецифические звенья патогенеза: уменьшение про
|
||||||||||||||
Последнее изменение этой страницы: 2017-02-17; просмотров: 799; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.135.24 (0.019 с.) |