Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Имитация потоков событий и случайных векторных величин.

Поиск

Общие характеристики потоков

Поток событий – последовательность событий, происходящих одно за другим в какие-то моменты времени.

Поток однородных событий – поток, события в котором различаются только моментами появления.

Поток однородных случайных событий – случайный процесс с целочисленными неотрицательными значениями и непрерывным временем.

Задается поток случайных событий двумя способами:

• распределением числа событий, происходящих в интервале времени произвольной длины и расположенных произвольно относительно начала отсчета

• распределением длительности интервалов между осуществлениями событий

Поток событий регулярный, если события следуют одно за другим через строго определенные промежутки времени (предельный случай).

Свойства потоков

1. Стационарность. Означает независимость от времени вероятностных характеристик потока, т.е. вероятность попадания того или иного числа событий на участок времени длиной зависит только от длины участка и не зависит от того, где именно на оси Ot расположен этот участок.

2. Последействие. Введем два понятия – отсутствие последействия и ограниченность последействия.

Отсутствие последействия – независимость числа событий, происходящих в непересекающиеся промежутки времени.

Ограниченность последействия – независимость промежутков времени между наступлениями событий.

Заметим, что обычно, если входной поток не имеет последействия, то выходной имеет последействие

3. Ординарность. Соответствует случаю, если вероятность попадания на элементарный участок Δt двух или более событий пренебрежимо мала по сравнению с вероятностью попадания одного события.
Простейший поток – поток стационарный, ординарный и без последействия

Имитация потока событий

1. Поток однородных событий

ti - момент времени i-го события, т.е. требуется задать последовательность СВ t1,t2,…tm

ξ1,ξ2…ξm – длины интервалов между событиями

 
 


Переходим к рассмотрению СВ ξ

и пусть их совместная функция

плотности f(z1,z2…zk)

 

Рассмотрим класс потоков с ограниченным последействием.

Случайный поток однородных событий называется с ограниченным последействием, если СВ ξi независимы.

Отсюда вытекает, что в этом случае совместная функция плотности f(z1,z2…zn)=f1(z1)*f2(z2)*…fn(zn).

Функции fi(zi) при i>1 – условные функции плотности величин ξi при условии, что в начальный момент интервала ξi поступила заявка.
f1(z1) –частная, маргинальная
Рассмотрим стационарный поток (если вероятность появления к-событий за промежуток времени (t0,t0+t) не зависит от t0, а зависит только от k и t.
Для стационарных потоков с ограниченным последействием
f2(z)=f3(z)=…=fk(z)=f(z), т.е. при t>1 интервалы ξi одинаково распределены.

 
 

 

 


М – средняя длина интервала между последовательными заявками.
λ=1/М – среднее количество событий в единицу времени.

 

Допустим, что в стационарном потоке однородных заявок с ограниченным последействием имеет место равномерное распределение интервалов времени между заявками.
f(z) = 1/b (0≤ z ≤ b)
Т.к. M[ξ] = b/2 (для равномерного закона (a+b)/2), то λ = 2/b.
Если простейший поток, то, здесь λ – плотность простейшего потока.

Формула Пальма связывает плотности f1(z1) и f(z)

 

Имитация векторных случайных величин

Рассмотрим моделирование непрерывной СВ ξ = (ξ1,ξ2…ξm). Ее полное описание задается совместной плотностью распределения

Cтандартный метод

основан на представлении f(x) в виде произведения

 

частной (маргинальной) плотности распределения величины ξ1 и условных плотностей распределения ξк при условии, что ξ1=x1, ξ2=x2,…

ξk-1=xk-1. Таким образом вектор ξ может моделироваться покомпонентно: сначала величина ξ1 с плотностью φ1(x) = f1(x1), далее ξ2 с φ2(x) = f2(x|ξ1) … последней ξm c φm(x)=fm(x|ξ1…ξm-1).

Стандартный метод требует определенной вычислительной работы, связанной с нахождением условных и частных плотностей распределения компонент. После вычисления плотностей каждая компонента моделируется как скалярная величина известными методами.


 



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 350; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.60.132 (0.009 с.)