Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Определение информационных потоков

Поиск

Понятно, что через один транзитный узел может проходить несколько маршрутов, на­пример, через узел 5 (см. рис. 2.14) проходят, как минимум, все данные, направляемые узлом 4 каждому из остальных узлов, а также все данные, поступающие в узлы 3,4 и 10. Транзитный узел должен уметь распознавать поступающие на него потоки данных, для того чтобы обеспечивать передачу каждого из них именно на тот свой интерфейс, который ведет к нужному узлу.

Информационным потоком, или потоком данных, называют непрерывную последовательность данных, объединенных набором общих признаков, выделяющих эти данные из общего сетевого трафика.

Например, как поток можно определить все данные, поступающие от одного компьюте­ра; объединяющим признаком в данном случае служит адрес источника. Эти же данные можно представить как совокупность нескольких подпотоков, каждый из которых в ка­честве дифференцирующего признака имеет адрес назначения. Наконец, каждый из этих подпотоков, в свою очередь, можно разделить на более мелкие подпотоки, порожденные разными сетевыми приложениями — электронной почтой, программой копирования фай­лов, веб-сервером. Данные, образующие поток, могут быть представлены в виде различных информационных единиц данных — пакетов, кадров или ячеек.

ПРИМЕЧАНИЕ

В англоязычной литературе для потоков данных, передающихся с равномерной и неравномерной ско­ростью, обычно используют разные термины — соответственно «data stream» и «data flow». Например, при передаче веб-страницы через Интернет предложенная нагрузка представляет собой неравномер­ный поток данных, а при вещании музыки интернет-станцией — равномерный. Для сетей передачи данных характерна неравномерная скорость передачи, поэтому далее в большинстве ситуаций под термином «поток данных» мы будем понимать именно неравномерный поток данных и указывать на равномерный характер этого процесса только тогда, когда это нужно подчеркнуть.

Очевидно, что при коммутации в качестве обязательного признака выступает адрес на­значения данных. На основании этого признака весь поток входящих в транзитный узел данных разделяется на подпотоки, каждый из которых передается на интерфейс, соответ­ствующий маршруту продвижения данных.

Адреса источника и назначения определяют поток для пары соответствующих конечных узлов. Однако часто бывает полезно представить этот поток в виде нескольких подпотоков, причем для каждого из них может быть проложен свой особый маршрут. Рассмотрим при­мер, когда на одной и той же паре конечных узлов выполняется несколько взаимодействую­щих по сети приложений, каждое из которых предъявляет к сети свои особые требования. В таком случае выбор маршрута должен осуществляться с учетом характера передаваемых данных, например, для файлового сервера важно, чтобы передаваемые им большие объемы данных направлялись по каналам, обладающим высокой пропускной способностью, а для программной системы управления, которая посылает в сеть короткие сообщения, требую­щие обязательной и немедленной отработки, при выборе маршрута более важна надеж­ность линии связи и минимальный уровень задержек на маршруте. Кроме того, даже для данных, предъявляющих к сети одинаковые требования, может прокладываться несколько маршрутов, чтобы за счет распараллеливания ускорить передачу данных.

Признаки потока могут иметь глобальное или локальное значение — в первом случае они однозначно определяют поток в пределах всей сети, а во втором — в пределах одного транзитного узла. Пара адресов конечных узлов для идентификации потока — это пример глобального признака. Примером признака, локально определяющего поток в пределах устройства, может служить номер (идентификатор) интерфейса данного устройства, на который поступили данные. Например, возвращаясь к рис. 2.14, узел 1 может быть настро­ен так, чтобы передавать на интерфейс В все данные, поступившие с интерфейса А, а на интерфейс С — данные, поступившие с интерфейса D. Такое правило позволяет отделить поток данных узла 2 от потока данных узла 7 и направлять их для транзитной передачи через разные узлы сети, в данном случае поток узла 2 — через узел 5, а поток узла 7 — через узел 8.

Метка потока — это особый тип признака. Она представляет собой некоторое число, ко­торое несут все данные потока. Глобальная метка назначается данным потока и не меняет своего значения на всем протяжении его пути следования от узла источника до узла на­значения, таким образом, она уникально определяет поток в пределах сети. В некоторых технологиях используются локальные метки потока, динамически меняющие свое значе­ние при передаче данных от одного узла к другому.

Таким образом» распознавание потоков во время коммутации происходит на основании при­знаков, в качестве которых, помимо обязательного адреса назначения данных, могут выступать и другие признаки, такие, например, как идентификаторы приложений.

Маршрутизация

Задача маршрутизации, в свою очередь, включает в себя две подзадачи:

§ определение маршрута;

§ оповещение сети о выбранном маршруте.

Определить маршрут означает выбрать последовательность транзитных узлов и их интер­фейсов, через которые надо передавать данные, чтобы доставить их адресату. Определение маршрута — сложная задача, особенно когда конфигурация сети такова, что между парой взаимодействующих сетевых интерфейсов существует множество путей. Чаще всего выбор останавливают на одном оптимальном [8] по некоторому критерию маршруте. В качестве кри­териев оптимальности могут выступать, например, номинальная пропускная способность и загруженность каналов связи; задержки, вносимые каналами; количество промежуточных транзитных узлов; надежность каналов и транзитных узлов.

Но даже в том случае, когда между конечными узлами существует только один путь, при сложной топологии сети его нахождение может представлять собой нетривиальную задачу.

Маршрут может определяться эмпирически («вручную») администратором сети на основа­нии различных часто не формализуемых соображений. Среди побудительных мотивов вы­бора пути могут быть: особые требования к сети со стороны различных типов приложений, решение передавать трафик через сеть определенного поставщика услуг, предположения о пиковых нагрузках на некоторые каналы сети, соображения безопасности.

Однако эмпирический подход к определению маршрутов мало пригоден для большой сети со сложной топологией. В этом случае используются автоматические методы определения маршрутов. Для этого конечные узлы и другие устройства сети оснащаются специальными программными средствами, которые организуют взаимный обмен служебными сообщения­ми, позволяющий каждому узлу составить свое «представление» о сети. Затем на основе собранных данных программными методами определяются рациональные маршруты.

При выборе маршрута часто ограничиваются только информацией о топологии сети. Этот подход иллюстрирует рис. 2.15. Для передачи трафика между конечными узлами А и С существует два альтернативных маршрута: А-1-2-3-С и А-1-3-С. Если мы учитываем только топологию, то выбор очевиден — маршрут А-1-3-С, который имеет меньше тран­зитных узлов.

Рис. 2.15. Выбор маршрута

 

Решение было найдено путем минимизации критерия, в качестве которого в данном при­мере выступала длина маршрута, измеренная количеством транзитных узлов. Однако, возможно, наш выбор был не самым лучшим. На рисунке показано, что каналы 1-2 и 2-3 обладают пропускной способностью 100 Мбит/с, а канал 1-3 — только 10 Мбит/с. Если мы хотим, чтобы наша информация передавалась по сети с максимально возможной скоро­стью, то нам следовало бы выбрать маршрут А- 1-2-3-С, хотя он и проходит через большее количество промежуточных узлов. То есть можно сказать, что маршрут А- 1-2-3-С в данном случае оказывается «более коротким».

Абстрактный способ измерения степени близости между двумя объектами называется метрикой. Так, для измерения длины маршрута могут быть использованы разные метри­ки — количество транзитных узлов, как в предыдущем примере, линейная протяженность маршрута и даже его стоимость в денежном выражении. Для построения метрики, учиты­вающей пропускную способность, часто используют следующий прием: длину каждого канала-участка характеризуют величиной, обратной его пропускной способности. Чтобы оперировать целыми числами, выбирают некоторую константу, заведомо большую, чем пропускные способности каналов в сети. Например, если мы в качестве такой константы выберем 100 Мбит/с, то метрика каждого из каналов 1-2 и 2-3 равна 1, а метрика канала 1-3 составляет 10. Метрика маршрута равна сумме метрик составляющих его каналов, поэтому часть пути 1-2-3 обладает метрикой 2, а альтернативная часть пути 1-3 — метрикой 10. Мы выбираем более «короткий» путь, то есть путь A-1-2-3-С.

Описанные подходы к выбору маршрутов не учитывают текущую степень загруженности каналов трафиком[9]. Используя аналогию с автомобильным трафиком, можно сказать, что мы выбирали маршрут по карте, учитывая количество промежуточных городов и ширину дороги (аналог пропускной способности канала), отдавая предпочтение скоростным маги­стралям. Но мы не стали слушать радио или телевизионную программу, которая сообщает о текущих заторах на дорогах. Так что наше решение оказывается отнюдь не лучшим, когда по маршруту A-1-2-3-С уже передается большое количество потоков, а маршрут A-1-3-С практически свободен.

После того как маршрут определен (вручную или автоматически), надо оповестить о нем все устройства сети. Сообщение о маршруте должно нести каждому транзитному устрой­ству примерно такую информацию: «каждый раз, когда в устройство поступят данные, от­носящиеся к потоку п, их следует передать для дальнейшего продвижения на интерфейс F». Каждое подобное сообщение о маршруте обрабатывается устройством, в результате соз­дается новая запись в таблице коммутации. В этой таблице локальному или глобальному признаку (признакам) потока (например, метке, номеру входного интерфейса или адресу назначения) ставится в соответствие номер интерфейса, на который устройство должно передавать данные, относящиеся к этому потоку.

Таблица 2.1 является фрагментом таблицы коммутации, содержащий запись, сделанную на основании сообщения о необходимости передачи потока п на интерфейс F.

Таблица 2.1. Фрагмент таблицы коммутации

Признаки потока Направление передачи данных (номер интерфейса и/или адрес следующего узла)
n F

 

Конечно, детальное описание структуры сообщения о маршруте и содержимого таблицы коммутации зависит от конкретной технологии, однако эти особенности не меняют сущ­ности рассматриваемых процессов.

Передача информации транзитным устройствам о выбранных маршрутах, так же как и определение маршрута, может осуществляться вручную или автоматически. Админи­стратор сети может зафиксировать маршрут, выполнив в ручном режиме конфигуриро­вание устройства, например, жестко скоммутировав на длительное время определенные пары входных и выходных интерфейсов (как работали «телефонные барышни» на первых коммутаторах). Он может также по собственной инициативе внести запись о маршруте в таблицу коммутации.

Однако поскольку топология и состав информационных потоков могут меняться (отказы узлов или появление новых промежуточных узлов, изменение адресов или определение новых потоков), гибкое решение задач определения и задания маршрутов предполагает постоянный анализ состояния сети и обновление маршрутов и таблиц коммутации. В таких случаях задачи прокладки маршрутов, как правило, не могут быть решены без достаточно сложных программных и аппаратных средств.

Продвижение данных

Итак, пусть маршруты определены, записи о них сделаны в таблицах всех транзитных узлов, все готово к выполнению основной операции — передаче данных между абонентами (коммутации абонентов).

Для каждой пары абонентов эта операция может быть представлена несколькими (по числу транзитных узлов) локальными операциями коммутации. Прежде всего, отправитель должен выставить данные на тот свой интерфейс, с которого начинается найденный марш­рут, а все транзитные узлы должны соответствующим образом выполнить «переброску» данных с одного своего интерфейса на другой, другими словами, выполнить коммутацию интерфейсов. Устройство, функциональным назначением которого является коммутация, называется коммутатором. На рис. 2.16 показан коммутатор, который переключает инфор­мационные потоки между четырьмя своими интерфейсами.

Рис. 2.16. Коммутатор

 

Однако прежде чем выполнить коммутацию, коммутатор должен распознать поток. Для этого поступившие данные анализируются на предмет наличия в них признаков какого- либо из потоков, заданных в таблице коммутации. Если произошло совпадение, то эти данные направляются на интерфейс, определенный для них в маршруте.

О ТЕРМИНАХ

Термины «коммутация», «таблица коммутации» и «коммутатор» в телекоммуникационных сетях могут трактоваться неоднозначно. Мы уже определили коммутацию как процесс соединения або­нентов сети через транзитные узлы. Этим же термином мы обозначаем и соединение интерфейсов в пределах отдельного транзитного узла. Коммутатором в широком смысле называется устройство любого типа, способное выполнять операции переключения потока данных с одного интерфейса на другой. Операция коммутации может выполняться в соответствии с различными правилами и алго­ритмами. Некоторые способы коммутации и соответствующие им таблицы и устройства получили специальные названия. Например, в технологиях сетевого уровня, таких как IP и IPX, для обозна­чения аналогичных понятий используются термины «маршрутизация», «таблица маршрутизации», «маршрутизатор». В то же время за другими специальными типами коммутации и соответствующими устройствами закрепились те же самые названия «коммутация», «таблица коммутации» и «комму­татор», применяемые в узком смысле, например, как коммутация и коммутатор локальной сети. Для телефонных сетей, которые появились намного раньше компьютерных, также характерна аналогичная терминология, коммутатор является здесь синонимом телефонной станции. Из-за солидного возраста и гораздо большей (пока) распространенности телефонных сетей чаще всего в телекоммуникациях под термином «коммутатор» понимают именно телефонный коммутатор.

Коммутатором может быть как специализированное устройство, так и универсальный компьютер со встроенным программным механизмом коммутации, в этом случае ком­мутатор называется программным. Компьютер может совмещать функции коммутации данных с выполнением своих обычных функций как конечного узла. Однако во многих случаях более рациональным является решение, в соответствии с которым некоторые узлы в сети выделяются специально для коммутации. Эти узлы образуют коммутацион­ную сеть, к которой подключаются все остальные. На рис. 2.17 показана коммутацион­ная сеть, образованная из узлов 7, 5, 6 и 8, к которой подключаются конечные узлы 2,3,4,7, 9 и 10, 11.

Рис. 2.17. Коммутационная сеть

 



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 1224; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.160.29 (0.011 с.)