Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Работа в недогруженном режимеСодержание книги
Поиск на нашем сайте
Как мы уже отмечали, самым простым способом обеспечения требований QoS для всех потоков является работа сети в недогруженном режиме, или же с избыточной пропускной способностью. Говорят, что сеть имеет избыточную пропускную способность, когда все части сети в любой момент времени обладают такой пропускной способностью, которой достаточно, чтобы обслужить все потоки трафика, протекающего в это время через сеть, с удовлетворительными характеристиками производительности и надежности. Другими словами, ни одно из сетевых устройств такой сети никогда не подвергается перегрузкам, которые могли бы привести к значительным задержкам или потерям пакетов из-за переполнения очередей пакетов (конечно, это не исключает случаев потерь сетью пакетов по другим причинам, не связанным с перегрузкой сети, например, из-за искажений сигналов на линиях связи либо отказов сетевых узлов или линий связи). Простота этого подхода является его главным достоинством, так как он требует только увеличения пропускной способности линий связи и, соответственно, производительности коммуникационных устройств сети. Никаких дополнительных усилий по исследованию характеристик потоков сети и конфигурированию дополнительных очередей и механизмов кондиционирования трафика, как в случае применения методов QoS, здесь не требуется. Заметим, что определение сети с избыточной пропускной способностью было намеренно упрощено, чтобы передать суть идеи. Более точное определение должно учитывать случайный характер протекающих в сети процессов и оперировать статистическими определениями событий, то есть говорить, что такие события, как длительные задержки или потери пакетов из-за переполнения очередей в сети с избыточной пропускной способностью, случаются так редко, что ими можно пренебречь. В результате трафик всех приложений в подобной сети переносится с высоким качеством. Однако доказать, что сеть действительно является сетью с избыточной пропускной способностью, на практике достаточно трудно. Только постоянное измерение времен доставки пакетов всем конечным узлам сети может показать, что сеть удовлетворяет данному описанию - мы уже сталкивались с этой ситуацией, когда рассматривали механизм гарантирования определенного уровня задержек пакетов при применении методов QoS. Однако мониторинг задержек и их вариаций является тонкой и трудоемкой работой. Обычно операторы, которые хотят поддерживать свою сеть в недогруженном состоянии и за счет этого обеспечивать высокое качество обслуживания, поступают проще — они осуществляют мониторинг уровня трафика в линиях связи сети, то есть измеряют коэффициент использования пропускной способности линий связи. При этом линия связи считается недогруженной, если ее коэффициент использования постоянно не превосходит некоторый достаточно низкий уровень, например 10 %. Имея такие значения измерений, можно считать, что линия в среднем не испытывает перегрузок, а значит, задержки пакетов будут низкими — мы знаем о такой зависимости между коэффициентом загрузки ресурса и задержками из теории массового обслуживания, рассмотренной на примере простейшей модели М/М/1. Однако даже столь низкие значения загрузки не исключают появления на линии кратковременных пульсаций трафика, способных приводить к повышению пиковой скорости трафика до величины пропускной способности линии и, следовательно, к значительным задержкам или потерям небольшого количества пакетов. Для некоторых типов приложений такие потери могут быть весьма чувствительными. Многие средства мониторинга скорости трафика, особенно встроенные в коммутаторы и маршрутизаторы, измеряют скорость трафика, усредняя ее на слишком длинных интервалах. В результате такие средства мониторинга просто не способны зарегистрировать кратковременные пульсации трафика и часто дают слишком оптимистичную оценку загруженности сети. Эту проблему иллюстрирует рис. 7.21. На нем показаны результаты измерения скорости трафика на интерфейсе с пропускной способностью в 2 Мбит/с. Рис. 7.21. Зависимость результатов измерений скорости трафика от времени усреднения
На рисунке представлены три кривые, полученные для одного и того же трафика при различных интервалах усреднения данных. Серой сплошной линией показаны результаты, полученные для интервала усреднения данных в 1 мс; пунктирная черная линия демонстрирует результаты для интервала усреднения в 2 мс, а штрих-пунктирная черная линия соответствует интервалу в 25 мс. Обычная практика для оценки состояния недогруженности интерфейса состоит в использовании предела в 25 % от его пропускной способности как индикатора недогруженности. Для нашего примера это соответствует скорости трафика 500 Кбит/с. Тогда, используя результаты мониторинга интерфейса с интервалом усреднения в 25 мс, мы уверенно считаем, что интерфейс недогружен и нам не стоит беспокоиться о возможных задержках и потерях пакетов из-за перегрузок интерфейса. Однако глядя на серую кривую (усреднение 1 мс), мы видим, что в шести интервалах скорость намного превышала 500 Кбит/с, а значит, на этих интервалах длительные задержки и потери пакетов вполне могли случиться. Наконец, данные, полученные при усреднении в 2 мс, показывают, что интерфейс находится вблизи границы недогруженности. Данные, использованные для построения кривых на рис. 7.21, были искусственно подобраны так, чтобы показать крайние ситуации. Однако эти кривые действительно отражают тонкий и важный эффект измерений, который нужно учитывать при мониторинге загрузки линий связи сети: слишком длительные интервалы усреднения при измерении скорости могут существенно исказить картину и привести к потере важной информации, а в конечном итоге — к переоценке возможностей сети качественно передавать трафик. Часто на практике выполняют мониторинг загрузки линий связи с 5-секундным интервалом усреднения, что явно недостаточно для оценки состояния сети. Для более достоверной оценки состояния сети нужно дополнять мониторинг загрузки линий связи сети хотя бы выборочным мониторингом характеристик QoS, таких как задержки, вариации задержек и потери пакетов. В этом случае можно с большей уверенностью говорить о том, что сеть действительно является сетью с избыточной пропускной способностью, которая гарантирует всем типам трафика качественное обслуживание. Кроме того, выборочный мониторинг характеристик QoS может помочь в определении предела загрузки линий, служащего для оценки их недогруженности. В нашем примере в качестве такого предела мы использовали значение 25 %, но вполне возможно, что это эмпирическое значение для некоторой конкретной сети требуется уточнить. Выводы Качество обслуживания в его узком смысле фокусирует внимание на характеристиках и методах передачи трафика через очереди коммуникационных устройств. Методы обеспечения качества обслуживания занимают сегодня важное место в семействе технологий сетей с коммутацией пакетов, так как без их применения сложно обеспечить качественную работу современных мультимедийных приложений, таких как IP-телефония, видео- и радиовещание, интерактивное дистанционное обучение и т. п. Характеристики QoS отражают отрицательные последствия пребывания пакетов в очередях, которые проявляются в снижении скорости передачи, задержках пакетов и их потерях. Существуют различные типы трафика, отличающиеся чувствительностью к задержкам и потерям пакетов. Наиболее грубая классификация трафика разделяет его на два класса: трафик реального времени (чувствительный к задержкам) и эластичный трафик (нечувствительный к задержкам в широких пределах). Методы QoS основаны на перераспределении имеющейся пропускной способности линий связи между трафиком различного типа в соответствии с требованиями приложений. Приоритетные и взвешенные очереди являются основным инструментом выделения пропускной способности определенным потокам пакетов. Механизм профилирования позволяет контролировать скорость потока пакетов и ограничивать ее в соответствии с заранее заданным уровнем. Обратная связь является одним из механизмов QoS; она позволяет временно снизить скорость поступления пакетов в сеть для ликвидации перегрузки в узле сети. Резервирование пропускной способности «из конца в конец» позволяет добиться гарантированного качества обслуживания для потока пакетов. Резервирование основано на процедуре контроля допуска потока в сеть, в ходе которой проверяется наличие доступной пропускной способности для обслуживания потока вдоль маршрута его следования. Методы инжиниринга трафика состоят в выборе рациональных маршрутов прохождения потоков через сеть. Выбор маршрутов обеспечивает максимизацию загрузки ресурсов сети при одновременном соблюдении необходимых гарантий в отношении параметров качества обслуживания трафика. Недогруженная сеть (она же сеть с избыточной пропускной способностью) может обеспечить качественное обслуживание трафика всех типов без применения методов QoS; однако для того чтобы убедиться, что сеть действительно недогружена, требуется постоянно проводить мониторинг уровней загрузки линий связи сети, выполняя измерения с достаточно высокой частотой. Вопросы и задания 1. В чем причина возникновения очередей в сетях с коммутацией пакетов? Возникают ли очереди в сетях с коммутацией каналов? 2. Какой параметр в наибольшей степени влияет на размер очереди? 3. К каким нежелательным последствиям может привести приоритетное обслуживание? 4. На какие два класса можно разделить приложения в отношении предсказуемости скорости передачи данных? 5. При увеличении пульсации некоторого потока увеличатся или уменьшатся задержки, связанные с пребыванием пакетов этого потока в очереди (при сохранении всех других параметров потока и условий его обслуживания)? 6. Какому элементу коммутатора или маршрутизатора чаще всего соответствует обслуживающий прибор модели М/М/1? 7. Объясните причину возможного возникновения очередей даже при невысокой средней загрузке коммутаторов или маршрутизаторов сети с коммутацией пакетов? 8. Для трафика какого типа в наибольшей степени подходит взвешенное обслуживание? Варианты ответов: а) трафика видеоконференций; б) трафика загрузки больших файлов данных; в) трафика IP-телефонии. 9. А приоритетное обслуживание? 10. Можно ли комбинировать приоритетное и взвешенное обслуживание? 11. Какой из трех потоков будет меньше в среднем задерживаться в очереди к выходному интерфейсу 100 Мбит/с, если потоки обслуживаются взвешенными очередями, при этом потокам отведено 60,30 и 10 % пропускной способности интерфейса соответственно? Потоки имеют средние скорости: 50,15 и 7 Мбит/с соответственно. Коэффициент вариации интервалов следования пакетов одинаков у всех потоков. 12. И. Что является причиной того, что поток, который обслуживается в очереди самого высокого приоритета, все равно сталкивается с необходимостью ожидания в очереди? Варианты ответов: а) очереди более низких приоритетов; б) собственная пульсация; в) пульсации низкоприоритетного трафика. 13. Может ли пропускная способность, зарезервированная в сети с коммутацией пакетов для потока A, использоваться потоком В? 14. Какой параметр трафика меняется при инжиниринге трафика? 15. Почему обычные протоколы маршрутизации не используются при решении задач инжиниринга трафика? Варианты ответов: а) они не обеспечивают быстрого нахождения нового маршрута при отказах элементов сети; б) они не позволяют прокладывать различные маршруты для потоков с одним и тем же адресом назначения; в) при выборе маршрута они не учитывают свободной пропускной способности линий связи сети. 16. Каковы преимущества и недостатки метода работы сети в недогруженном режиме по сравнению с методами QoS? 17. Мониторинг какой характеристики сети обычно выполняют операторы связи при работе сети в недогруженном режиме без применения механизмов QoS?
|
||||
Последнее изменение этой страницы: 2017-02-05; просмотров: 577; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.59.18 (0.008 с.) |