Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Множественный доступ с кодовым разделением

Поиск

Как и в случае FHSS, кодирование методом DSSS позволяет мультиплексировать не­сколько каналов в одном диапазоне. Техника такого мультиплексирования называется множественным доступом с кодовым разделением (Code Division Multiplexing Access, CDMA). Она широко используется в сотовых сетях.

Хотя техника CDMA может применяться совместно с кодированием методом FHSS, на практике в беспроводной сети она чаще сочетается с методом DSSS.

Каждый узел сети, работающий по методу CDMA, посылает данные в разделяемую среду в те моменты времени, когда это ему нужно, то есть синхронизация между узлами отсут­ствует. Идея CDMA заключается в том, что каждый узел сети задействует собственное значение расширяющей последовательности. Эти значения выбираются так, чтобы при­нимающий узел, который знает значение расширяющей последовательности передающего узла, мог выделить данные передающего узла из суммарного сигнала, образующегося в результате одновременной передачи информации несколькими узлами.

Для того чтобы такую операцию демультиплексирования можно было выполнить, значения расширяющей последовательности выбираются определенным образом. Поясним идею CDMA на примере.

Пусть в сети работает четыре узла: А, В, С и D. Каждый узел использует следующие значе­ния расширяющей последовательности:

A: 01010101

В: 10100101

С: 10011001

D: 11111111

Предположим также, что при передаче единиц и нулей расширяющей последовательности (то есть уже преобразованного исходного кода) используются сигналы, которые являются аддитивными и инверсными. Инверсность означает, что двоичная единица кодируется, например, синусоидой с амплитудой +A, а двоичный ноль — синусоидой с амплитудой -А Из условия аддитивности следует, что если фазы этих амплитуд совпадут, то при одно­временной передача единицы и нуля мы получим нулевой уровень сигнала. Для упро­щения записи расширяющей последовательности обозначим синусоиду с положительной амплитудой значением +1, а синусоиду с отрицательной амплитудой — значением -1. Для простоты допустим также, что все узлы сети CDMA синхронизированы.

Таким образом, при передаче единицы исходного кода 4 узла передают в среду такие по­следовательности:

А: -1+1-1+1-1+1-1+1

В: +1-1+1-1-1+1-1+1

С: +1-1-1+1+1-1-1+1

D: +1+1+1+1+1+1+1+1

При передаче нуля исходного кода сигналы расширяющей последовательности инверти­руются.

Пусть теперь каждый из 4-х узлов независимо от других передает в сеть один бит исходной информации: узел А →1, узел В →0, узел С →0, узел D →1.

В среде 5 сети наблюдается такая последовательность сигналов:

А:-1+1-1+1-1+1-1 +1

В:-1+1-1+1+1-1+1-1

С: -1+1+1-1-1+1+1-1

D: +1+1+1+1+1+1 +1+1

В соответствии со свойством аддитивности получаем:

S: -2 +4 0+2 0+2 +2 0

Если, например, некоторый узел Е хочет принимать информацию от узла А, то он должен использовать свой демодулятор CDMA, задав ему в качестве параметра значение расши­ряющей последовательности узла А.

Демодулятор CDMA последовательно складывает все четыре суммарных сигнала S i, при­нятые в течение каждого такта работы. При этом сигнал S i, принятый втакте, на котором код расширения станции А равен +1, учитывается в сумме со своим знаком, а сигнал, принятый в такте, на котором код расширения станции А равен -1, добавляется в сумму с противоположным знаком. Другими словами, демодулятор выполняет операцию ска­лярного умножения вектора принятых сигналов на вектор значения расширяющей по­следовательности нужной станции:

S × A = (-2 +4 0+2 0+2 +2 0)х(-1 +1 -1 +1-1 +1 -1 +1)-8.

Для того чтобы узнать, какой бит послала станция А, осталось нормализовать результат, то есть разделить его на количество разрядов в расширяющей последовательности: 8/8 * 1. Если бы станция хотела принимать информацию от станции В, то ей нужно было бы при демодуляции использовать код расширения станции B (+1-1+1-1-1+1-1+1):

S × В = (-2 +4 0 +2 0 +2 +2 0) х (+1 -1 +1 -1 -1 +1 -1 +1) = -8.

После нормализации мы получаем сигнал -1, который соответствует двоичному нулю исходной информации станции В.

Мы объяснили только основную идею CDMA, предельно упростив ситуацию. На практике CDMA является весьма сложной технологией, которая оперирует не условными значения­ми +1 и -1, а модулированными сигналами, например сигналами BPSK. Кроме того, узлы сети не синхронизированы между собой, а сигналы, которые приходят от удаленных на различные расстояния от приемника узлов, имеют разную мощность. Проблема синхрони­зации приемника и передатчика решается за счет передачи длинной последовательности определенного кода, называемого пилотным сигналом. Для того же, чтобы мощности всех передатчиков были примерно равны для базовой станции, в CDMA применяются специ­альные процедуры управления мощностью.

Выводы

Беспроводная связь делится на мобильную и фиксированную. Для организации мобильной связи беспроводная среда является единственной альтернативой. Фиксированная беспроводная связь обеспечивает доступ к узлам сети, расположенным в пределах небольшой территории, например здания.

Каждый узел беспроводной линии связи оснащается антенной, которая одновременно является передатчиком и приемником электромагнитных волн.

Электромагнитные волны могут распространяться во всех направлениях или же в пределах опреде­ленного сектора. Тип распространения зависит от типа антенны.

Беспроводные системы передачи данных делятся на четыре группы в зависимости от используемого диапазона электромагнитного спектра: широковещательные (радио-) системы, микроволновые системы, системы инфракрасных волн, системы видимого света.

Из-за отражения, дифракции и рассеивания электромагнитных волн возникает многолучевое рас­пространение одного и того же сигнала. Это приводит к межсимвольной интерференции и много­лучевому замиранию.

Передача данных в диапазонах 900 МГц, 2,4 ГГц и 5 ГГц, которые получили название ISM-диапазонов, не требует лицензирования, если мощность передатчика не превышает 1 Вт.

Беспроводные двухточечные линии связи служат для создания радиорелейных линий, соединения зданий, а также пары компьютеров.

Беспроводные линии связи с одним источником и несколькими приемниками строятся на основе базовой станции. Такие линии используются в мобильных сотовых сетях, а также в системах фик­сированного доступа.

Топология с несколькими источниками и несколькими приемниками характерна для беспроводных локальных сетей.

В системах спутниковой связи используются три группы спутников: геостационарные, среднеорби­тальные и низкоорбитальные.

Для кодирования дискретной информации в беспроводных системах прибегают к манипуляции (FSK и PSK), модуляции с несколькими несущими частотами (OFDM) и методам расширения спектра (FHSS и DSSS).

В методах расширения спектра для представления информации используется широкий диапазон частот, это уменьшает влияние на сигналы узкополосных шумов.

На основе методов FHSS и DSSS можно мультиплексировать несколько каналов в одном диапазоне частот. Такая техника мультиплексирования называется множественным доступом с кодовым раз­делением (CDMA).

Вопросы и задания

1. Назовите основные области применения беспроводных линий связи.

2. В чем достоинства и недостатки беспроводной передачи информации по сравнению с проводной?

3. Антенна какого типа является направленной? Варианты ответов:

а) параболическая?

б) изотропная.

4. За счет чего радиоволны с частотами от 2 до 30 МГц могут распространяться на сотни километров?

5. Какой спектр волн используется для спутниковой связи?

6. Какие атмосферные явления мешают распространению микроволн?

7. Что из ниже перечисленного используется для ненаправленного распространения инфракрасных волн:

а) лазерные диоды;

б) система линз;

в) отражение от потолка;

г) тепловые антенны.

8. Какие препятствия вызывают дифракцию? Варианты ответов:

а) непроницаемые препятствия, размер которых соизмерим с длиной волны;

б) непроницаемые препятствия, размер которых намного больше длины волны;

в) непроницаемые препятствия, размер которых намного меньше длины волны.

9. В каких случаях применяются эллиптические орбиты телекоммуникационных спут­ников?

10. Какими недостатками обладает геостационарный спутник? Варианты ответов:

а) велики задержки сигнала;

б) велико затухание сигнала, что приводит к необходимости использования антенн большого диаметра;

в) мало покрытие территории;

г) плохая связь в районах, близких к северному и южному полюсам.

11. При соблюдении какого условия технология FHSS является высокоскоростной?

12. Какое свойство последовательности Баркера определяет возможность ее использова­ния в технологии DSSS?

13. Назовите основное свойство расширяющих последовательностей, используемых в технологии CDMA.

14. Можно ли в качестве расширяющих последовательностей узлов сети, поддерживающих множественный доступ с кодовым разделением на основе технологии DSSS, исполь­зовать значения 100...0,0100...0,0010...0,00010...0 и т. д.?

15. Предложите 11-битную расширяющую последовательность, отличную от последова­тельности Баркера, которая, как и последовательность Баркера, позволяет надежно определять начало передачи очередного бита исходной информации.

ГЛАВА 11 Первичные сети

Первичные сети предназначены для создания коммутируемой инфраструктуры, с помощью кото­рой можно достаточно быстро и гибко организовать постоянный канал с двухточечной топологией между двумя пользовательскими устройствами, подключенными к такой сети. В первичных сетях применяется техника коммутации каналов. На основе каналов, образованных первичными сетями, работают наложенные компьютерные или телефонные сети. Каналы, предоставляемые первичными сетями своим пользователям, отличаются высокой пропускной способностью — обычно от 2 Мбит/с до 10 Гбит/с.

Существует несколько поколений технологий первичных сетей:

§ плезиохронная цифровая иерархия (Plesiochronous Digital Hierarchy, PDH);

§ синхронная цифровая иерархия (Synchronous Digital Hierarchy, SDH) — этой технологии в Америке соответствует стандарт SONET;

§ уплотненное волновое мультиплексирование (Dense Wave Division Multiplexing, DWDM);

§ оптические транспортные сети (Optical Transport Network, OTN) — данная технология определяет способы передачи данных по волновым каналам DWDM.

В технологиях PDH, SDH и OTN для разделения высокоскоростного канала применяется временнбе мультиплексирование (TDM), а данные передаются в цифровой форме. Каждая из них поддерживает иерархию скоростей, так что пользователь может выбрать подходящую ему скорость Для каналов, с помощью которых он будет строить наложенную сеть.

Технологии OTN и SDH обеспечивают более высокие скорости, чем технология PDH, так что при построении крупной первичной сети ее магистраль строится на технологии OTN или SDH, а сеть доступа — на технологии PDH.

Сети DWDM не являются собственно цифровыми сетями, так как предоставляют своим пользо­вателям выделенную волну для передачи информации, которую те могут применять по своему усмотрению — модулировать или кодировать. Техника мультиплексирования DWDM существенно повысила пропускную способность современных телекоммуникационных сетей, так как она позво­ляет организовать в одном оптическом волокне несколько десятков волновых каналов, каждый из которых может переносить цифровую информацию. В начальный период развития технологии DWDM волновые каналы использовались в основном для передачи сигналов SDH, то есть мультиплексоры DWDM были одновременно и мультиплексорами SDH для каждого из своих волновых каналов.

Впоследствии для более эффективного использования волновых каналов DWDM была разработана технология OTN, которая позволяет передавать по волновым каналам сигналы любых технологий, включая SDH, Gigabit Ethernet и 10G Ethernet.

Сети PDH

Технология PDH была разработана в конце 60-х годов компанией AT&T для решения проблемы связи крупных коммутаторов телефонных сетей между собой. Линии связи FDM, применяемые ранее для решения этой задачи, исчерпали свои возможности в плане организации высокоскоростной многоканальной связи по одному кабелю. В технологии FDM для одновременной передачи данных 12 абонентских каналов использовалась витая пара, а для повышения скорости связи приходилось прокладывать кабели с большим ко­личеством пар проводов или более дорогие коаксиальные кабели.

Иерархия скоростей

Начало технологии PDH было положено разработкой мультиплексора Т-1, который по­зволял в цифровом виде мультиплексировать, передавать и коммутировать (на постоянной основе) голосовой трафик 24 абонентов. Так как абоненты по-прежнему пользовались обычными телефонными аппаратами, то есть передача голоса шла в аналоговой форме, то мультиплексоры Т-1 сами осуществляли оцифровывание голоса с частотой 8000 Гц и коди­ровали голос методом импульсно-кодовой модуляции. В результате каждый абонентский канал образовывал цифровой поток данных 64 Кбит/с, а мультиплексор Т-1 обеспечивал передачу 1,544 Мбит/с.

В качестве средств мультиплексирования при соединении крупных телефонных стан­ций каналы Т-1 были слишком медленны и негибки, поэтому была реализована идея образования каналов с иерархией скоростей. Четыре канала типа Т-1 объединили в ка­нал следующего уровня цифровой иерархии — Т-2, передающий данные со скоростью 6,312 Мбит/с. Канал Т-3, образованный путем объединения семи каналов Т-2, имеет ско­рость 44,736 Мбит/с. Канал Т-4 объединяет 6 каналов Т-3, в результате его скорость равна 274 Мбит/с. Описанная технология получила название системы Т-каналов.

С середины 70-х годов выделенные каналы, построенные на основе систем Т-каналов, стали сдаваться телефонными компаниями в аренду на коммерческих условиях, перестав быть внутренней технологией этих компаний. Системы Т-каналов позволяют передавать не только голос, но и любые данные, представленные в цифровой форме: компьютерные данные, телевизионное изображение, факсы и т. п.

Технология систем Т-каналов была стандартизована Американским национальным инсти­тутом стандартов (ANSI), а позже — международной организацией ITU-T. При стандар­тизации она получила название плезиохронной цифровой иерархии (PDH). В результате внесенных ITU-T изменений возникла несовместимость американской и международной версий стандарта PDH. Аналогом систем Т-каналов в международном стандарте являются каналы типа Е-1, Е-2 и Е-3 с отличающимися скоростями — соответственно 2,048 Мбит/с, 8,488 Мбит/с и 34,368 Мбит/с. Американская версия сегодня помимо США распростра­нена также в Канаде и Японии (с некоторыми различиями), в Европе же применяется международный стандарт ITU-T.

Несмотря на различия, в американской и международной версиях технологии цифровой иерархии принято использовать одни и те же обозначения для иерархии скоростей — DSn (Digital Signal п). В табл. 11.1 приводятся значения для всех введенных стандартами уров­ней скоростей обеих технологий.

Таблица 11.1. Иерархия цифровых скоростей

Америка ITU-T (Европа)
Обозначение Количество Количество Скорость, Количество Количество Скорость,
скорости голосовых каналов Мбит/с голосовых каналов Мбит/с
  каналов предыдущего   каналов предыдущего  
    уровня     уровня  
DS-0     64 Кбит/с     64 Кбит/с
DS-1     1,544     2,048
DS-2     6,312     8,488
DS-3     44,736     34,368
DS-4     274,176     139,264

На практике в основном используются каналы Т-1/Е-1 и Т-З/Е-З.

 

Методы мультиплексирования

Мультиплексор Т-1 обеспечивает передачу данных 24-х абонентов со скоростью

Мбит/с в кадре, имеющем достаточно простой формат. В этом кадре последователь­но передается по одному байту каждого абонента, а после 24 байт вставляется один бит синхронизации. Первоначально устройства Т-1 (которые дали имя всей технологии, ра­ботающей на скорости 1,544 Мбит/с) функционировали только на внутренних тактовых генераторах, и каждый кадр с помощью битов синхронизации мог передаваться асин­хронно. Аппаратура Т-1 (а также более скоростная аппаратура Т-2 и Т-3) за долгие годы существования претерпела значительные изменения.

Сегодня мультиплексоры и коммутаторы первичной сети работают на централизованной тактовой частоте, распределяемой из одной или нескольких точек сети.

Однако принцип формирования кадра остался, поэтому биты синхронизации в кадре по-прежнему присутствуют. Суммарная скорость пользовательских каналов составляет 24 х 64 = 1,536 Мбит/с, а еще 8 Кбит/с добавляют биты синхронизации, итого получается

Мбит/с.

Теперь рассмотрим еще одну особенность формата кадра Т-1. В аппаратуре Т-1 восьмой бит каждого байта в кадре имеет назначение, зависящее от типа передаваемых данных и поколе­ния аппаратуры. При передаче голоса с помощью этого бита переносится служебная инфор­мация, к которой относятся номер вызываемого абонента и другие сведения, необходимые для установления соединения между абонентами сети. Протокол, обеспечивающий такое соединение, называется в телефонии сигнальным протоколом. Поэтому реальная скорость передачи пользовательских данных в этом случае составляет не 64, а 56 Кбит/с. Техника применения восьмого бита для служебных целей получила название «кражи» бита.

При передаче компьютерных данных канал Т-1 предоставляет для пользовательских данных только 23 канала, а 24-й канал отводится для служебных целей, в основном — для восстановления искаженных кадров. Компьютерные данные передаются со скоростью 64 Кбит/с, так как восьмой бит не «крадется».

При одновременной передаче как голосовых, так и компьютерных данных используются все 24 канала, причем и компьютерные, и голосовые данные передаются со скоростью 56 Кбит/с

При мультиплексировании 4-х каналов Т-1 в один канал Т-2 между кадрами DS-1 по- прежнему передается один бит синхронизации, а кадры DS-2 (которые состоят из 4-х по­следовательных кадров DS-1) разделяются 12 служебными битами, предназначенными не только для разделения кадров, но и для их синхронизации. Соответственно, кадры DS-3 состоят из 7 кадров DS-2, разделенных служебными битами.

Версия технологии PDH, описанная в международных стандартах G.700-G.706 ITU-T, как уже отмечалось, имеет отличия от американской технологии систем Т-каналов. В част­ности, в ней не используется схема «кражи бита». При переходе к следующему уровню иерархии коэффициент кратности скорости имеет постоянное значение 4. Вместо восьмого бита в канале Е-1 на служебные цели отводятся 2 байта из 32, а именно нулевой (для целей синхронизации приемника и передатчика) и шестнадцатый (в нем передается служебная сигнальная информация). Для голосовых или компьютерных данных остается 30 каналов со скоростью передачи 64 Кбит/с каждый.

При мультиплексировании нескольких пользовательских потоков в мультиплексорах PDH применяется техника, называемая бит-стаффингом. К этой технике прибегают, когда скорость пользовательского потока оказывается несколько меньше, чем скорость объединенного потока — подобные проблемы могут возникать в сети, состоящей из боль­шого количества мультиплексоров, несмотря на все усилия по централизованной синхро­низации узлов сети (в природе нет ничего идеального, в том числе идеально синхронных узлов сети). В результате мультиплексор PDH периодически сталкивается с ситуацией, когда ему «не хватает» бита для представления в объединенном потоке того или иного пользовательского потока. В этом случае мультиплексор просто вставляет в объединенный поток бит-вставку и отмечает этот факт в служебных битах объединенного кадра. При де­мультиплексировании объединенного потока бит-вставка удаляется из пользовательского потока, который возвращается в исходное состояние. Техника бит-стаффинга применяется как в международной, так и в американской версиях PDH.

Отсутствие полной синхронности потоков данных при объединении низкоскоростных ка­налов в высокоскоростные и дало название технологии PDH («плезиохронный» означает «почти синхронный»).

Пользователь может арендовать несколько каналов 64 Кбит/с (56 Кбит/с) в канале Т-1/ Е-1. Такой канал называется «дробным» каналом Т-1/Е-1. В этом случае пользователю отводится несколько тайм-слотов работы мультиплексора.

Физический уровень технологии PDH поддерживает различные виды кабелей: витую пару, коаксиальный кабель, волоконно-оптический кабель. Основным вариантом абонентского доступа к каналам Т-1/Е-1 является кабель из двух витых пар с разъемами RJ-48. Две пары требуются для организации дуплексного режима передачи данных со скоростью 544/2,048 Мбит/с. Для представления сигналов используются:

§ в каналах Т-1 — биполярный потенциальный код B8ZS;

§ в каналах Е-1 — биполярный потенциальный код HDB3.

Для усиления сигнала на линиях Т-1 через каждые 1800 м (одна миля) устанавливаются регенераторы и аппаратура контроля линии.

Коаксиальный кабель благодаря своей широкой полосе пропускания поддерживает один канал Т-2/Е-2 или 4 канала Т-1/Е-1. Для работы каналов Т-З/Е-З обычно использу­ется либо коаксиальный кабель, либо волоконно-оптический кабель, либо каналы СВЧ.

Физический уровень международного варианта технологии определяется стандартом G.703. Название этого стандарта служит также для обозначения типа интерфейса марш­рутизатора или моста, подключаемого к каналу Е-1. Американский вариант названия интерфейса — Т-1.

Синхронизация сетей PDH

В случае небольшой сети PDH, например сети города, синхронизация всех устройств сети из одной точки представляется достаточно простым делом. Однако для более крупных сетей, например сетей масштаба страны, которые состоят из некоторого количества регио­нальных сетей, синхронизация всех устройств сети представляет собой проблему.

Общий подход к решению этой проблемы описан в стандарте ITU-T G.810. Он заключается в организации в сети иерархии эталонных источников синхросигналов, а также системы распределения синхросигналов по всем узлам сети (рис. 11.1).

Рис. 11.1. Организация распределения синхросигналов по узлам сети PDH

 

Каждая крупная сеть должна иметь, по крайней мере, один первичный эталонный генера­тор (ПЭГ) синхросигналов (в англоязычном варианте — Primary Reference Clock, PRC). Это очень точный источник синхросигналов, способный вырабатывать синхросигналы с относительной точностью частоты не хуже 10-11 (такую точность требуют стандарты ITU-T G.811 и ANSI Т1.101, в последнем для описания точности ПЭГ применяется на­звание Stratum 1). На практике в качестве ПЭГ используют либо автономные атомные (водородные или цезиевые) часы, либо часы, синхронизирующиеся от спутниковых си­стем точного мирового времени, таких как GPS или ГЛОНАСС. Обычно точность ПЭГ достигает 10-13.

Стандартным синхросигналом является сигнал тактовой частоты уровня DS1, то есть частоты 2048 кГц для международного варианта стандартов PDH и 1544 кГц для амери­канского варианта этих стандартов.

Синхросигналы от ПЭГ непосредственно поступают на специально отведенные для этой цели синхровходы магистральных устройств сети PDH. В том случае, если это составная сеть, то каждая крупная сеть, входящая в состав составной сети (например, региональная сеть, входящая в состав национальной сети), имеет свой ПЭГ.

Для синхронизации немагистральных узлов используется вторичный задающий генератор (ВЗГ) синхросигналов, который в варианте ITU-T называют Secondary Reference Clock (SRC), а в варианте ANSI — генератор уровня Stratum 2. ВЗГ работает в режиме при­нудительной синхронизации, являясь ведомым таймером в паре ПЭГ-ВЗГ. Обычно ВЗГ получает синхросигналы от некоторого ПЗГ через промежуточные магистральные узлы сети, при этом для передачи синхросигналов используются биты служебных байтов кадра, например нулевого байта кадра Е-1 в международном варианте PDH.

Точность ВЗГ меньше, чем точность ПЭГ: ITU-T в стандарте G.812 определяет ее как «не хуже 10-9», а точность генераторов Stratum 2 должна быть не «хуже 1,6 х 10-8».

Иерархия эталонных генераторов может быть продолжена, если это необходимо, при этом точность каждого более низкого уровня естественно понижается. Генераторы ниж­них уровней, начиная от ВЗГ, могут использовать для выработки своих синхросигналов несколько эталонных генераторов более высокого уровня, но при этом в каждый момент времени один из них должен быть основным, а остальные — резервными; такое построе­ние системы синхронизации обеспечивает ее отказоустойчивость. Однако в этом случае нужно приоритезировать сигналы генераторов более высоких уровней. Кроме того, при построении системы синхронизации нужно гарантировать отсутствие петель синхрони­зации.

Методы синхронизации цифровых сетей, кратко описанные в этом разделе, применимы не только к сетям PDH, но и к другим сетям, работающих на основе синхронного TDM- мультиплексирования, например к сетям SDH, а также к сетям цифровых телефонных коммутаторов.

Ограничения технологии PDH

Как американский, так и международный варианты технологии PDH обладают недостат­ками, основным из которых является сложность и неэффективность операций мульти­плексирования и демультиплексирования пользовательских данных. Применение техники бит-стаффинга для выравнивания скоростей потоков приводит к тому, что для извлечения пользовательских данных из объединенного канала необходимо полностью (!) демульти­плексировать кадры объединенного канала.

Например, чтобы получить данные одного абонентского канала 64 Кбит/с из кадров канала Т-3, требуется произвести демультиплексирование этих кадров до уровня кадров Т-2, за­тем - до уровня кадров Т-1, а в конце концов демультиплексировать и сами кадры Т-1.

Если сеть PDH используется только в качестве транзитной магистрали между двумя крупными узлами, то операции мультиплексирования и демультиплексирования выпол­няются исключительно в конечных узлах, и проблем не возникает. Но если необходимо выделить один или несколько абонентских каналов в промежуточном узле сети PDH, то эта задача простого решения не имеет. Как вариант предлагается установка двух муль­типлексоров уровня ТЗ/ЕЗ и выше в каждом узле сети (рис. 11.2). Первый призван обе­спечить полное демультиплексирование потока и отвод части низкоскоростных каналов абонентам, второй — опять собрать в выходной высокоскоростной поток оставшиеся каналы вместе с вновь вводимыми. При этом количество работающего оборудования удваивается.

Рис. 11.2. Выделение низкоскоростного канала путем полного демультиплексирования

 

Другой вариант — «обратная доставка». В промежуточном узле, где нужно выделить и отве­сти абонентский поток, устанавливается единственный высокоскоростной мультиплексор, который просто передает данные транзитом дальше по сети без их демультиплексирова­ния. Эту операцию выполняет только мультиплексор конечного узла, после чего данные соответствующего абонента возвращаются по отдельной линии связи в промежуточный узел. Естественно, такие сложные взаимоотношения коммутаторов усложняют работу сети, требуют ее тонкого конфигурирования, что ведет к большому объему ручной работы и ошибкам.

К тому же в технологии PDH не предусмотрены встроенные средства обеспечения отка­зоустойчивости и администрирования сети.

Наконец, недостатком PDH являются слишком низкие по современным понятиям скоро­сти передачи данных. Волоконно-оптические кабели позволяют передавать данные со ско­ростями в несколько гигабит в секунду по одному волокну, что обеспечивает консолидацию в одном кабеле десятков тысяч пользовательских каналов, но эту возможность технология PDH не реализует — ее иерархия скоростей заканчивается уровнем 139 Мбит/с.

Сети SONET/SDH

Характерные для технологии PDH недостатки были учтены и преодолены разработчиками технологии синхронных оптических сетей (Synchronous Optical NET, SONET), первый вариант стандарта которой появился в 1984 г. Затем она была стандартизована комитетом Т-1 института ANSI. Международная стандартизация технологии проходила под эгидой

Европейского института телекоммуникационных стандартов (European Telecommunications Standards Institute, ETSI) и сектором телекоммуникационной стандартизации союза ITU (ITU Telecommunication Standardization Sector, ITU-T) совместно с ANSI и ведущими телекоммуникационными компаниями Америки, Европы и Японии. Основной целью раз­работчиков международного стандарта было создание технологии, способной передавать трафик всех существующих цифровых каналов уровня PDH (как американских Т1-ТЗ, так и европейских Е1-Е4) по высокоскоростной магистральной сети на базе волоконно- оптических кабелей и обеспечить иерархию скоростей, продолжающую иерархию техно­логии PDH до скорости в несколько гигабит в секунду.

В результате длительной работы ITU-T и ETSI удалось подготовить международный стан­дарт SDH (Synchronous Digital Hierarchy — синхронная цифровая иерархия). Кроме того, стандарт SONET был доработан так, чтобы аппаратура и сети SDH и SONET являлись со­вместимыми и могли мультиплексировать входные потоки практически любого стандарта PDH — и американского, и европейского.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 493; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.61.180 (0.014 с.)