Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Алгоритм прозрачного моста IEEE 802.1D

Поиск

В локальных сетях 80-х и 90-х годов применялись мосты нескольких типов:

§ прозрачные мосты;

§ мосты с маршрутизацией от источника;

§ транслирующие мосты.

Мосты с маршрутизацией от источника применялись только в сетях Token Ring, а трансли­рующие мосты были способны соединять сегменты разных технологий, например Ethernet и Token Ring. В результате исчезновения всех технологий локальных сетей, кроме Ethernet, оба этих типа мостов также исчезли, а алгоритм прозрачного моста выжил, найдя свое при­менение в коммутаторах Ethernet.

Слово «прозрачный» в названии алгоритм прозрачного моста отражает тот факт, что мо­сты и коммутаторы в своей работе не учитывают существование в сети сетевых адаптеров конечных узлов, концентраторов и повторителей. В то же время и перечисленные сетевые устройства функционируют, «не замечая» присутствия в сети мостов и коммутаторов.

Так как алгоритм прозрачного моста остался единственным актуальным алгоритмом мо­стов, то в дальнейшем мы будем опускать термин «прозрачный», подразумевая именно этот тип алгоритма работы моста/коммутатора.

Мост строит свою таблицу продвижения (адресную таблицу) на основании пассивного наблюдения за трафиком, циркулирующим в подключенных к его портам сегментах. При этом мост учитывает адреса источников кадров данных, поступающих на его порты. По адресу источника кадра мост делает вывод о принадлежности узла-источника тому или иному сегменту сети.

ВНИМАНИЕ

Каждый порт моста работает, как конечный узел своего сегмента, за одним исключением — порт моста может не иметь собственного MAC-адреса. Порты мостов не нуждаются в адресах для продвижения кадров, так как они работают в режиме неразборчивого захвата кадров, когда все поступающие на порт кадры, независимо от их адреса назначения, запоминаются на время в буферной памяти. Рабо­тая в неразборчивом режиме, мост «слушает» весь трафик, передаваемый в присоединенных к нему сегментах, и использует проходящие через него кадры для изучения топологии сети и построения таблицы продвижения. В том случае, когда порт моста/коммутатора имеет собственный МАС-адрес, он используется для целей, отличных от продвижения кадров, чаще всего — для удаленного управления портом; в этом случае порт представляет собой конечный узел сети, и кадры адресуются непосредственно ему.

Рассмотрим процесс автоматического создания таблицы продвижения моста и ее исполь­зования на примере простой сети, представленной на рис. 13.4.

 

Рис. 13.4. Принцип работы прозрачного моста/коммутатора

 

Мост соединяет два сетевых сегмента. Сегмент 1 составляют компьютеры, подключенные с помощью одного отрезка коаксиального кабеля к порту 1 моста, а сегмент 2 — компью­теры, подключенные с помощью другого отрезка коаксиального кабеля к порту 2 моста. В исходном состоянии мост не знает о том, компьютеры с какими МАС-адресами подклю­чены к каждому из его портов. В этой ситуации мост просто передает любой захваченный и буферизованный кадр на все свои порты за исключением того порта, от которого этот кадр получен. В нашем примере у моста только два порта, поэтому он передает кадры с порта 1 на порт 2, и наоборот. Отличие работы моста в этом режиме от повторителя заклю­чается в том, что он передает кадр, предварительно буферизуя его, а не бит за битом, как это делает повторитель. Буферизация разрывает логику работы всех сегментов как единой разделяемой среды. Когда мост собирается передать кадр с сегмента на сегмент, например с сегмента 1 на сегмент 2, он, как обычный конечный узел, пытается получить доступ к разделяемой среде сегмента 2 по правилам алгоритма доступа, в данном примере — по правилам алгоритма CSMA/CD.

Одновременно с передачей кадра на все порты мост изучает адрес источника кадра и делает запись о его принадлежности к тому или иному сегменту в своей адресной таблице. Эту таблицу также называют таблицей фильтрации, или продвижения. Например, получив на порт 1 кадр от компьютера 1, мост делает первую запись в своей адресной таблице: МАС-адрес 1 — порт 1.

Эта запись означает, что компьютер, имеющий МАС-адрес 1, принадлежит сегменту, под­ключенному к порту 1 коммутатора. Если все четыре компьютера данной сети проявляют активность и посылают друг другу кадры, то скоро мост построит полную адресную табли­цу сети, состоящую из 4-х записей — по одной записи на узел (см. рис. 13.4).

При каждом поступлении кадра на порт моста он, прежде всего, пытается найти адрес на­значения кадра в адресной таблице. Продолжим рассмотрение действий моста на примере (см. рис. 13.4).

1. При получении кадра, направленного от компьютера 1 компьютеру 3, мост просма­тривает адресную таблицу на предмет совпадения адреса в какой-либо из ее записейс адресом назначения — МАС-адресом 3. Запись с искомым адресом имеется в адресной таблице.

2. Мост выполняет второй этап анализа таблицы — проверяет, находятся ли компьютеры с адресами источника и назначения в одном сегменте. В примере компьютер 1 (МАС- адрес 1) и компьютер 3 (МАС-адрес 3) находятся в разных сегментах. Следовательно, мост выполняет операцию продвижения (forwarding) кадра — передает кадр на порт 2, ведущий в сегмент получателя, получает доступ к сегменту и передает туда кадр.

3. Если бы оказалось, что компьютеры принадлежали одному сегменту, то кадр просто был бы удален из буфера. Такая операция называется фильтрацией (filtering).

4. Если бы запись о МАС-адресе 3 отсутствовала в адресной таблице, то есть, другими сло­вами, адрес назначения был неизвестен мосту, го он передал бы кадр на все свои порты, кроме порта — источника кадра, как и на начальной стадии процесса обучения.

Процесс обучения моста никогда не заканчивается и происходит одновременно с про­движением и фильтрацией кадров. Мост постоянно следит за адресами источника буфе­ризуемых кадров, чтобы автоматически приспосабливаться к изменениям, происходящим в сети, — перемещениям компьютеров из одного сегмента сети в другой, отключению и появлению новых компьютеров.

Входы адресной таблицы могут быть динамическими, создаваемыми в процессе самообу­чения моста, и статическими, создаваемыми вручную администратором сети. Статические записи не имеют срока жизни, что дают администратору возможность влиять на работу моста, например ограничивая передачу кадров с определенными адресами из одного сег­мента в другой.

Динамические записи имеют срок жизни — при создании или обновлении записи в адрес­ной таблице с ней связывается отметка времени. По истечении определенного тайм-аута запись помечается как недействительная, если за это время мост не принял ни одного кадра с данным адресом в поле адреса источника. Это дает возможность мосту автоматически реагировать на перемещения компьютера из сегмента в сегмент — при его отключении от старого сегмента запись о принадлежности компьютера к этому сегменту со временем вы­черкивается из адресной таблицы. После подключения компьютера к другому сегменту его кадры начнут попадать в буфер моста через другой порт, и в адресной таблице появится новая запись, соответствующая текущему состоянию сети.

Кадры с широковещательными МАС-адресами, как и кадры с неизвестными адресами назначения, передаются мостом на все его порты. Такой режим распространения кадров называется затоплением сети (flooding). Наличие мостов в сети не препятствует рас­пространению широковещательных кадров по всем сегментам сети. Однако это является достоинством только тогда, когда широковещательный адрес выработан корректно рабо­тающим узлом.

Нередко в результате каких-либо программных или аппаратных сбоев протокол верхнего уровня или сетевой адаптер начинает работать некорректно, а именно постоянно с высокой интенсивностью генерировать кадры с широковещательным адресом. Мост в соответствии со своим алгоритмом передает ошибочный трафик во все сегменты. Такая ситуация на­зывается широковещательным штормом (broadcast storm).

К сожалению, мосты не защищают сети от широковещательного шторма, во всяком слу­чае, по умолчанию, как это делают маршрутизаторы (вы познакомитесь с этим свойством маршрутизаторов в части IV). Максимум, что может сделать администратор с помощью коммутатора для борьбы с широковещательным штормом — установить для каждого пор­та моста предельно допустимую интенсивность передачи кадров с широковещательным адресом. Но при этом нужно точно знать, какая интенсивность является нормальной, а какая — ошибочной. При смене протоколов ситуация в сети может измениться, и то что вчера считалось ошибочным, сегодня может оказаться нормой.

На рис. 13.5 показана типичная структура моста. Функции доступа к среде при приеме и передаче кадров выполняют микросхемы MAC, которые идентичны микросхемам сете­вого адаптера.

Рис. 13.5. Структура моста/коммутатора

 

Протокол, реализующий алгоритм коммутатора, располагается между уровнями MAC и LLC.

На рис. 13.6 показана копия экрана терминала с адресной таблицей моста.

Рис. 13.6. Адресная таблица коммутатора

Из выводимой на экран адресной таблицы видно, что сеть состоит из двух сегментов — LAN А и LAN В. В сегменте LAN А имеются, по крайней мере, 3 станции, а в сегменте LAN В — 2 станции. Четыре адреса, помеченные звездочками, являются статическими, то есть назначенными администратором вручную. Адрес, помеченный плюсом, является динамическим адресом с истекшим сроком жизни.

Таблица имеет поле Dispn — «disposition» (это «распоряжение» мосту о том, какую опе­рацию нужно проделать с кадром, имеющим данный адрес назначения). Обычно при автоматическом составлении таблицы в этом поле ставится условное обозначение порта на­значения, но при ручном задании адреса в это поле можно внести нестандартную операцию обработки кадра. Например, операция Flood (затопление) заставляет мост распространять кадр в широковещательном режиме, несмотря на то что его адрес назначения не является широковещательным. Операция Discard (отбросить) говорит мосту, что кадр с таким адре­сом не нужно передавать на порт назначения. Вообще говоря, операции, задаваемые в поле Dispn, определяют особые условия фильтрации кадров, дополняющие стандартные условия их распространения. Такие условия обычно называют пользовательскими фильтрами, мы их рассмотрим немного позже в разделе «Фильтрация трафика» главы 14.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 1214; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.4.250 (0.01 с.)