Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Соглашение об уровне обслуживания

Поиск

Естественной основой нормального сотрудничества поставщика услуг и пользователей является договор. Договор всегда заключается между клиентами и поставщиками услуг публичных сетей передачи данных, однако не всегда в нем указываются количественные требования к эффективности предоставляемых услуг. Очень часто в договоре услуга специфицируется очень общо, например «предоставление доступа в Интернет».

Однако существует и другой тип договора, называемый соглашением об уровне обслу­живания (Service Level Agreement, SLA). В таком соглашении поставщик услуг и клиент описывают качество предоставляемой услуги в количественных терминах, пользуясь характеристиками эффективности сети. Например, в SLA может быть записано, что по­ставщик обязан передавать трафик клиента без потерь и с той средней скоростью, с которой пользователь направляет его в сеть. При этом оговорено, что это соглашение действует только в том случае, если средняя скорость трафика пользователя не превышает, на­пример, 3 Мбит/с, в противном случае поставщик получает право просто не передавать избыточный трафик. Для того чтобы каждая сторона могла контролировать соблюдение этого соглашения, необходимо еще указать период времени, на котором будет измеряться средняя скорость, например день, час или секунда. Еще более определенным соглашение SLA становится в том случае, когда в нем указываются средства и методы измерения ха­рактеристик сети, чтобы у поставщика и пользователя не было расхождений при контроле соглашения.

Соглашения SLA могут заключаться не только между поставщиками коммерческих услуг и их клиентами, но и между подразделениями одного и того же предприятия. В этом случае поставщиком сетевых услуг может являться, например, отдел информационных техноло­гий, а потребителем — производственный отдел.

Производительность

Мы уже знакомы с такими важными долговременными характеристиками производитель­ности сетевых устройств, как пропускная способность каналов или производительность коммутаторов и маршрутизаторов. Наибольший интерес данные характеристики пред­ставляют для поставщиков услуг — на их основе поставщик услуг может планировать свой бизнес, рассчитывая максимальное количество клиентов, которое он может обслужить, определяя рациональные маршруты прохождения трафика и т. п.

Однако клиента интересуют другие характеристики производительности, которые позволят ему количественно оценить, насколько быстро и качественно сеть передает его трафик. Для того чтобы определить эти характеристики, воспользуемся моделью идеальной сети.

Идеальная сеть

В разделе «Количественное сравнение задержек» главы 3 мы рассмотрели различные со­ставляющие задержек в сети с коммутацией пакетов. Напомним, что такими составляю­щими являются показатели времени:

§ передачи данных в канал (время сериализации);

§ распространения сигнала;

§ ожидания пакета в очереди;

§ коммутации пакета.

Два первых типа задержки определяются свойствами каналов передачи данных (битовой скоростью и скоростью распространения сигнала в среде) и являются фиксированными для пакета фиксированной длины.

Две вторых составляющих зависят от характеристик сети коммутации пакетов и в общем случае являются переменными.

Будем считать, что сеть с коммутацией пакетов работает идеально, если она передает каж­дый бит информации с постоянной скоростью, равной скорости распространения света в физической среде. Другими словами, идеальная сеть с коммутацией пакетов не вносит никаких дополнительных задержек в передачу данных помимо тех, которые вносятся каналами связи (и работает в отношении временных характеристик передачи данных так, как если бы она была сетью с коммутацией каналов).

Результат передачи пакетов такой идеальной сетью иллюстрирует рис. 6.1. На верхней оси показаны значения времени поступления пакетов в сеть от узла отправителя, а на ниж­нем — значения времени поступления пакетов в узел назначения. Другими словами, можно сказать, что верхняя ось показывает предложенную нагрузку сети, а нижняя — результат передачи этой нагрузки через сеть.

Рис. 6.1. Передача пакетов идеальной сетью

 

Пусть задержка передачи пакета определяется как интервал времени между моментом от­правления первого бита пакета в канал связи узлом отправления и моментом поступления первого бита пакета в узел назначения соответственно (на рисунке обозначены задержки d1, d2 и d3 пакетов 1, 2 и 3 соответственно).

Как видно из рисунка, идеальная сеть доставляет все пакеты узлу назначения:

§ не потеряв ни один из них (и не исказив информацию ни в одном из них);

§ в том порядке, в котором они были отправлены;

§ с одной и той же и минимально возможной задержкой (d1 = d2 и т. д.).

Важно, что все интервалы между соседними пакетами сеть сохраняет в неизменном виде. Например, если интервал между первым и вторым пакетами составляет при отправлении t1 секунд, а между вторым и третьим — t2, то такими же интервалы останутся в узле на­значения.

Надежная доставка всех пакетов с минимально возможной задержкой и сохранением временных интервалов между ними удовлетворит любого пользователя сети независимо от того, трафик какого приложения он передает по сети — веб-сервиса или IP-телефонии.

Существуют и другие определения времени задержки пакета. Например, эту величину можно определить как время между моментом отправления первого бита пакета в канал связи узлом отправления и моментом поступления последнего бита пакета в узел на­значения соответственно. Нетрудно видеть, что в этом определении в задержку пакета включено время сериализации, кроме того, понятно, что оба определения не противоречат друг другу и величина задержки, полученная в соответствии с одним определением, легко преобразуется в величину задержки, полученной в соответствии с другим. Мы выбрали первое определение для иллюстрации идеального поведения сети с коммутацией пакетов потому, что в этом случае задержка не зависит от размера пакета, что удобнее использовать, описывая «идеальность» обслуживания пакетов.

Теперь посмотрим, какие отклонения от идеала могут встречаться в реальной сети и какими характеристиками можно эти отклонения описывать (рис. 6.2).

Рис. 6.2. Передача пакетов реальной сетью

 

Пакеты доставляются сетью узлу назначения с различными задержками. Как мы уже знаем, это неотъемлемое свойство сетей с коммутацией пакетов.

Случайный характер процесса образования очередей приводит к случайным задержкам, при этом задержки отдельных пакетов могут быть значительными, в десятки раз превос­ходя среднюю величину задержек (d1 ≠ d2 ≠ d3 и т. д.). Неравномерность задержек приводит к неравномерным интервалам между соседними пакетами. То есть изменяется характер временных соотношений между соседними пакетами, а это может катастрофически ска­заться на качестве работы некоторых приложений. Например, при цифровой передаче речи

(или более обобщенно — звука) неравномерность интервалов между пакетами, несущими замеры голоса, приводит к существенным искажениям речи.

Пакеты могут доставляться узлу назначения не в том порядке, в котором они были отправ­лены, например, на рис. 6.2 пакет 4 поступил в узел назначения раньше, чем пакет 3. Такие ситуации встречаются в дейтаграммных сетях, когда различные пакеты одного потока передаются через сеть различными маршрутами, а следовательно, ожидают обслуживания в разных очередях с разным уровнем задержек. Очевидно, что пакет 3 проходил через пере­груженный узел или узлы, так что его суммарная задержка оказалась настолько большой, что пакет 4 прибыл раньше него.

Пакеты могут теряться в сети или же приходить в узел назначения с искаженными дан­ными, что равносильно потере пакета, так как большинство протоколов не способно вос­станавливать искаженные данные, а только определяет этот факт по значению контрольной последовательности кадра (Frame Check Sequence, FCS).

Пакеты также могут дублироваться по разным причинам, например из-за ошибочных по­вторных передач протоколов, обеспечивающих надежный обмен данными.

В реальной сети средняя скорость информационного потока на входе узла назначения может отличаться от средней скорости потока, направленного в сеть узлом-отправителем. Виной этому являются не задержки пакетов, а их потери[23]. Так, в примере, показанном на рис. 6.2, средняя скорость исходящего потока снижается из-за потери пакета 5. Чем больше потерь и искажений пакетов происходит в сети, тем ниже скорость информационного потока.

Как видно из приведенного описания, существуют различные характеристики произ­водительности сети (называемые также метриками производительности сети). Нельзя в общем случае говорить, что одни из этих характеристик более, а другие — менее важные. Относительная важность характеристик зависит от типа приложения, трафик которого переносит сеть. Так, существуют приложения, которые очень чувствительны к задержкам пакетов, но в то же время весьма терпимы к потере отдельного пакета — примером может служить передача голоса через пакетную сеть. Примером приложения, которое мало чув­ствительно к задержкам пакетов, но очень чувствительно к их потерям, является загрузка файлов (подробнее об этом говорится в главе 7). Поэтому для каждого конкретного случая необходимо выбирать подходящий набор характеристик сети, наиболее адекватно отра­жающий влияние неидеальности сети на работу приложения.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 427; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.90.192 (0.009 с.)