Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общая характеристика модели OSIСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
К концу 70-х годов в мире уже существовало большое количество фирменных стеков коммуникационных протоколов, среди которых можно назвать, например, такие популярные стеки, как DECnet, TCP/IP и SNA. Подобное разнообразие средств межсетевого взаимодействия вывело на первый план проблему несовместимости устройств, использующих разные протоколы. Одним из путей разрешения этой проблемы в то время виделся всеобщий переход на единый, общий для всех систем стек протоколов, созданный с учетом недостатков уже существующих стеков. Такой академический подход к созданию нового стека начался с разработки модели OSI и занял семь лет (с 1977 по 1984 год). Назначение модели OSI состоит в обобщенном представлении средств сетевого взаимодействия. Она разрабатывалась в качестве своего рода универсального языка сетевых специалистов, именно поэтому ее называют справочной моделью. ВНИМАНИЕ Модель OSI определяет, во-первых, уровни взаимодействия систем в сетях с коммутацией пакетов, во-вторых, стандартные названия уровней, в-третьих, функции, которые должен выполнять каждый уровень. Модель OSI не содержит описаний реализаций конкретного набора протоколов. В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представления, сеансовый, транспортный, сетевой, канальный и физический (рис. 4.6). Каждый уровень имеет дело с совершенно определенным аспектом взаимодействия сетевых устройств. Рис. 4.6. Модель взаимодействия открытых систем ISO/OSI
ВНИМАНИЕ Модель OSI описывает только системные средства взаимодействия, реализуемые операционной системой, системными утилитами, системными аппаратными средствами. Модель не включает средства взаимодействия приложений конечных пользователей. Важно различать уровень взаимодействия приложений и прикладной уровень семиуровневой модели. Приложения могут реализовывать собственные протоколы взаимодействия, используя для этих целей многоуровневую совокупность системных средств. Именно для этого в распоряжение программистов предоставляется прикладной программный интерфейс (Application Program Interface, API). В соответствии с идеальной схемой модели OSI приложение может обращаться с запросами только к самому верхнему уровню — прикладному, однако на практике многие стеки коммуникационных протоколов предоставляют возможность программистам напрямую обращаться к сервисам, или службам, расположенных ниже уровней. Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. В этом случае приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; оно обходит верхние уровни модели OSI и обращается непосредственно к ответственным за транспортировку сообщений по сети системным средствам, которые располагаются на нижних уровнях модели OSI. Итак, пусть приложение узла A хочет взаимодействовать с приложением узла В. Для этого приложение А обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Но для того чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни. После формирования сообщения прикладной уровень направляет его вниз по стеку уровню представления. Протокол уровня представления на основании информации, полученной из заголовка сообщения прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию — заголовок уровня представления, в котором содержатся указания для протокола уровня представления машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который, в свою очередь, добавляет свой заголовок и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце в виде так называемого концевика.) Наконец, сообщение достигает нижнего, физического, уровня, который собственно и передает его по линиям связи машине-адресату. К этому моменту сообщение Рис. 4.7. Вложенность сообщений различных уровней Физический уровень помещает сообщение на физический выходной интерфейс компьютера 1, и оно начинает свое «путешествие» по сети (до этого момента сообщение передавалось от одного уровню другому в пределах компьютера 1). Когда сообщение по сети поступает на входной интерфейс компьютера 2, оно принимается его физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню. Как видно из описания, протокольные сущности одного уровня не общаются между собой непосредственно, в этом общении всегда участвуют посредники — средства протоколов нижележащих уровней. И только физические уровни различных узлов взаимодействуют непосредственно. В стандартах ISO для обозначения единиц обмена данными, с которыми имеют дело протоколы разных уровней, используется общее название протокольная единица данных (Protocol Data Unit, PDU). Для обозначения единиц обмена данными конкретных уровней часто используются специальные названия, в частности: сообщение, кадр, пакет, дейтаграмма, сегмент. Физический уровень Физический уровень (physical layer) имеет, дело с передачей потока битов по физическим каналам связи, таким как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов. Физический уровень не вникает в смысл информации, которую он передает. Для него эта информация представляет собой однородный поток битов, которые нужно доставить без искажений и в соответствии с заданной тактовой частотой (интервалом между соседними битами). Канальный уровень Канальный уровень (data link layer) обеспечивает прозрачность соединения для сетевого уровня. Для этого он предлагает ему следующие услуги: установление логического соединения между взаимодействующими узлами; согласование в рамках соединения скоростей передатчика и приемника информации; обеспечение надежной передачи, обнаружение и коррекция ошибок. Для решения этих задач канальный уровень формирует из пакетов собственные протокольные единицы данных — кадры, состоящие из поля данных и заголовка. Канальный уровень помещает пакет в поле данных одного или нескольких кадров и заполняет собственной служебной информацией заголовок кадра. В сетях, построенных на основе разделяемой среды, физический уровень выполняет еще одну функцию — проверяет доступность разделяемой среды. Эту функцию иногда выделяют в отдельный подуровень управления доступом к среде (Medium Access Control, MAC). Протоколы канального уровня реализуются как на конечных узлах (средствами сетевых адаптеров и их драйверов), так и на всех промежуточных сетевых устройствах. Рассмотрим более подробно работу канального уровня, начиная с момента, когда сетевой уровень отправителя передает канальному уровню пакет, а также указание, какому узлу его передать. Для решения этой задачи канальный уровень создает кадр, который имеет иоле данных и заголовок. Канальный уровень помещает (инкапсулирует) пакет в поле данных кадра и заполняет соответствующей служебной информацией заголовок кадра. Важнейшей информацией заголовка кадра является адрес назначения, на основании которого коммутаторы сети будут продвигать пакет. Одной из задач канального уровня является обнаружение и коррекция ошибок. Канальный уровень может обеспечить надежность передачи, например, путем фиксирования границ кадра, помещая специальную последовательность битов в его начало и конец, а затем добавляя к кадру контрольную сумму. Контрольная сумма вычисляется по некоторому алгоритму как функция от всех байтов кадра. На стороне получателя канальный уровень группирует биты, поступающие с физического уровня, в кадры, снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой, переданной в кадре. Если они совпадают, кадр считается правильным. Если же контрольные суммы не совпадают, фиксируется ошибка. В функции канального уровня входит не только обнаружение ошибок, но и их исправление за счет повторной передачи поврежденных кадров. Однако эта функция не является обязательной и в некоторых реализациях канального уровня она отсутствует, например, в Ethernet. Прежде чем переправить кадр физическому уровню для непосредственной передачи данных в сеть, канальному уровню может потребоваться решить еще одну важную задачу. Если в сети используется разделяемая среда, то прежде чем физический уровень начнет передавать данные, канальный уровень должен проверить доступность среды. Как уже отмечалось, функции проверки доступности разделяемой среды иногда выделяют в отдельный подуровень управления доступом к среде (подуровень MAC). Если разделяемая среда освободилась (когда она не используется, то такая проверка, конечно, пропускается), кадр передается средствами физического уровня в сеть, проходит по каналу связи и поступает в виде последовательности битов в распоряжение физического уровня узла назначения. Этот уровень в свою очередь передает полученные биты «наверх» канальному уровню своего узла. Протокол канального уровня обычно работает в пределах сети, являющейся одной из составляющих более крупной составной сети, объединенной протоколами сетевого уровня. Адреса, с которыми работает протокол канального уровня, используются для доставки кадров только в пределах этой сети, а для перемещения пакетов между сетями применяются уже адреса следующего, сетевого, уровня. В локальных сетях канальный уровень поддерживает весьма мощный и законченный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня локальных сетей оказываются самодостаточными транспортными средствами и могут допускать работу непосредственно поверх себя протоколов прикладного уровня или приложений без привлечения средств сетевого и транспортного уровней. Тем не менее для качественной передачи сообщений в сетях с произвольной топологией функций канального уровня оказывается недостаточно. Сетевой уровень Сетевой уровень (network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, называемой составной сетью, или интернетом [19] . Технология, позволяющая соединять в единую сеть множество сетей, в общем случае построенных на основе разных технологий, называется технологией межсетевого взаимодействия (internetworking). На рис. 4.8 показано несколько сетей, каждая из которых использует собственную технологию канального уровня: Ethernet, FDDI, Token Ring, ATM, Frame Relay. На базе этих технологий любая из указанных сетей может связывать между собой любых пользователей, но только своей сети, и не способна обеспечить передачу данных в другую сеть. Причина такого положения вещей очевидна и кроется в существенных отличиях одной технологии от другой. Даже наиболее близкие технологии LAN — Ethernet, FDDI, Token Ring, — имеющие одну и ту же систему адресации (адреса подуровня MAC, называемые МАС-адресами), отличаются друг от друга форматом используемых кадров и логикой работы протоколов. Еще больше отличий между технологиями LAN и WAN. Во многих технологиях WAN задействована техника предварительно устанавливаемых виртуальных каналов, идентификаторы которых применяются в качестве адресов. Все технологии имеют собственные форматы кадров (в технологии ATM кадр даже называется иначе — ячейкой) и, конечно, собственные стеки протоколов. Рис. 4.8. Необходимость сетевого уровня
Чтобы связать между собой сети, построенные на основе столь отличающихся технологий, нужны дополнительные средства, и такие средства предоставляет сетевой уровень. Функции сетевого уровня реализуются: § группой протоколов; § специальными устройствами — маршрутизаторами. Одной из функций маршрутизатора является физическое соединение сетей. Маршрутизатор имеет несколько сетевых интерфейсов, подобных интерфейсам компьютера, к каждому из которых может быть подключена одна сеть. Таким образом, все интерфейсы маршрутизатора можно считать узлами разных сетей. Маршрутизатор может быть реализован программно на базе универсального компьютера (например, типовая конфигурация Unix или Windows включает программный модуль маршрутизатора). Однако чаще маршрутизаторы реализуются на базе специализированных аппаратных платформ. В состав программного обеспечения маршрутизатора входят протокольные модули сетевого уровня. Итак, чтобы связать сети, показанные на рис. 4.8, необходимо соединить все эти сети маршрутизаторами и установить протокольные модули сетевого уровня на все конечные узлы пользователей, которые хотели бы связываться через составную сеть (рис. 4.9). Рис. 4.9. Пример составной сети
Данные, которые необходимо передать через составную сеть, поступают на сетевой уровень от вышележащего транспортного уровня. Эти данные снабжаются заголовком сетевого уровня. Данные вместе с заголовком образуют пакет — так называется PDU сетевого уровня. Заголовок пакета сетевого уровня имеет унифицированный формат, не зависящий от форматов кадров канального уровня тех сетей, которые могут входить в составную сеть, и несет, наряду с другой служебной информацией, данные об адресе назначения этого пакета. Для того чтобы протоколы сетевого уровня могли доставлять пакеты любому узлу составной сети, эти узлы должны иметь адреса, уникальные в пределах данной составной сети. Такие адреса называются сетевыми, или глобальными. Каждый узел составной сети, который намерен обмениваться данными с другими узлами составной сети, наряду с адресом, назначенным ему на канальном уровне, должен иметь сетевой адрес. Например, на рис. 4.9 компьютер в сети Ethernet, входящей в составную сеть, имеет адрес канального уровня МАС1 и адрес сетевого уровня NET-A1; аналогично в сети ATM узел, адресуемый идентификаторами виртуальных каналов ID1 и ID2, имеет сетевой адрес NET-A2. В пакете в качестве адреса назначения должен быть указан адрес сетевого уровня, на основании которого определяется маршрут пакета. Определение маршрута является важной задачей сетевого уровня. Маршрут описывается последовательностью сетей (или маршрутизаторов), через которые должен пройти пакет, чтобы попасть к адресату. Например, на рис. 4.9 штриховой линией показано три маршрута, по которым могут быть переданы данные от компьютера Л к компьютеру Б. Маршрутизатор собирает информацию о топологии связей между сетями и на основе этой информации строит таблицы коммутации, которые в данном случае носят специальное название таблиц маршрутизации. Задачу выбора маршрута мы уже коротко обсуждали в разделе «Обобщенная задача коммутации» главы 2. В соответствии с многоуровневым подходом сетевой уровень для решения своей задачи обращается к нижележащему канальному уровню. Весь путь через составную сеть разбивается на участки от одного маршрутизатора до другого, причем каждый участок соответствует пути через отдельную сеть. Для того чтобы передать пакет через очередную сеть, сетевой уровень помещает его в поле данных кадра соответствующей канальной технологии, указывая в заголовке кадра канальный адрес интерфейса следующего маршрутизатора. Сеть, используя свою канальную технологию, доставляет кадр с инкапсулированным в него пакетом по заданному адресу. Маршрутизатор извлекает пакет из прибывшего кадра и после необходимой обработки передает пакет для дальнейшей транспортировки в следующую сеть, предварительно упаковав его в новый кадр канального уровня в общем случае другой технологии. Таким образом, сетевой уровень играет роль координатора, организующего совместную работу сетей, построенных на основе разных технологий. ПРИМЕР-АНАЛОГИЯ Можно найти аналогию между функционированием сетевого уровня и международной почтовой службы, такой, например, как DHL или TNT (рис. 4.10). Представим, что некоторый груз необходимо доставить из города Абра в город Кадабра, причем эти города расположены на разных континентах. Для доставки груза международная почта использует услуги различных региональных перевозчиков: железную дорогу, морской транспорт, авиаперевозчиков, автомобильный транспорт. Эти перевозчики могут рассматриваться как аналоги сетей канального уровня, причем каждая «сеть» здесь построена на основе собственной технологии. Из этих региональных служб международная почтовая служба должна организовать единую слаженно работающую сеть. Для этого международная почтовая служба должна, во-первых, продумать маршрут перемещения почты, во-вторых, координировать работу в пунктах смены перевозчиков (например, выгружать почту из вагонов и размещать ее в транспортном отсеке самолета). Каждый же перевозчик ответственен только за перемещение почты по своей части пути и не несет никакой ответственности за состояние почты за его пределами. Рис. 4.10. Работа международной почтовой службы
В общем случае функции сетевого уровня шире, чем обеспечение обмена в пределах составной сети. Так, сетевой уровень решает задачу создания надежных и гибких барьеров на пути нежелательного трафика между сетями. В заключение отметим, что на сетевом уровне определяются два вида протоколов. Первый вид — маршрутизируемые протоколы — реализуют продвижение пакетов через сеть. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых маршрутизирующими протоколами, или протоколами маршрутизации. С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений, на основании которой осуществляется выбор маршрута продвижения пакетов. Транспортный уровень На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Транспортный уровень (transport layer) обеспечивает приложениям или верхним уровням стека — прикладному, представления и сеансовому — передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов транспортного сервиса от низшего класса 0 до высшего класса 4. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное — способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов. Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими приложениями и протоколами более высоких, чем транспортный, уровней. С другой стороны, этот выбор зависит от того, насколько надежной является система транспортировки данных в сети, обеспечиваемая уровнями, расположенными ниже транспортного: сетевым, канальным и физическим. Так, если качество каналов передачи связи очень высокое и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уровня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства нижних уровней очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя максимум средств для обнаружения и устранения ошибок, включая предварительное установление логического соединения, контроль доставки сообщений по контрольным суммам и циклической нумерации пакетов, установление тайм-аутов доставки и т. п. Все протоколы, начиная с транспортного уровня и выше, реализуются программными средствами конечных узлов сети — компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно привести протоколы TCP и UDP стека ТСР/ IP и протокол SPX стека Novell. Протоколы нижних четырех уровней обобщенно называют сетевым транспортом, или транспортной подсистемой, так как они полностью решают задачу транспортировки сообщений с заданным уровнем качества в составных сетях с произвольной топологией и различными технологиями. Оставшиеся три верхних уровня решают задачи предоставления прикладных сервисов, используя нижележащую транспортную подсистему. Сеансовый уровень Сеансовый уровень (session layer) управляет взаимодействием сторон: фиксирует, какая из сторон является активной в настоящий момент, и предоставляет средства синхронизации сеанса. Эти средства позволяют в ходе длинных передач сохранять информацию о состоянии этих передач в виде контрольных точек, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов. Функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе. Уровень представления Уровень представления (presentation layer), как явствует из его названия, обеспечивает представление передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например кодов ASCII и EBCDIC. На этом уровне могут, выполняться шифрование и дешифрирование данных, благодаря которым секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол SSL (Secure Socket Layer — слой защищенных сокетов), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP. Прикладной уровень Прикладной уровень (application layer) — это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые веб-страницы, а также организуют свою совместную работу, например, по протоколу электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением. Существует очень большое разнообразие протоколов и соответствующих служб прикладного уровня. К протоколам прикладного уровня относится, в частности, упоминавшийся ранее протокол HTTP, с помощью которого браузер взаимодействует с веб-сервером. Приведем в качестве примера также несколько наиболее распространенных реализаций сетевых файловых служб: NFS и FTP в стеке TCP/IP, SMB в Microsoft Windows, NCP в операционной системе Novell NetWare.
|
||||
Последнее изменение этой страницы: 2017-02-05; просмотров: 1191; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.55.223 (0.01 с.) |