ТОП 10:

Типовые элементы графа связей



 

Элементы графа связей делятся на 4 группы: источники энергии, аккумуляторы энергии, элементы потери энергии и преобразователи энергии без потерь.

В первую группу входят два идеальных источника энергии (рис. 2.1a,b): источник усилия, обозначаемый как , и источник потока, имеющий обозначение . Источник усилия задает значение

, (2.5)

а источник потока

. (2.6)

В электрических системах этим элементам соответствуют, очевидно, идеальные источники ЭДС и тока. Легко устанавливаются аналогии и в системах иной природы. В соответствии со смыслом источников энергия выходит из них, что и отражается направлением полустрелок на связях источников.

Рис. 2.1. Односвязные элементы: a – источник усилия, b – источник потока, c – инерционность, d – потери, e – емкость

 

Группа аккумуляторов тоже включает два элемента: инерционность и емкость (рис. 2.1c,d). Взаимосвязь между усилиями и потоками для аккумуляторов может быть задана уравнениями:

(2.7)

для инерционности и

(2.8)

для емкости.

Если рассматривать линейные модели, то уравнения аккумуляторов можно записать в виде:

, (2.9)

, (2.10)

где для обозначения параметров аккумуляторов и используются те же буквы, что и в обозначениях элементов.

Аккумуляторы различаются тем, что инерционность имеет свойство накапливать кинетическую энергию, а емкость – потенциальную.

В третью группу входит один элемент потерь , для которого в общем случае

(2.11)

В простейшем случае уравнению (2.11) соответствует линейное уравнение

, (2.12)

где – параметр элемента.

Четвертая группа включает 4 преобразователя энергии: трансфор­матор, гиратор, узел общего усилия и узел общего потока.

Трансформатор (рис. 2.2) преобразует энергию в соответствии с формулами:

(2.13)

где – коэффициент передачи трансформатора.

Рис. 2.2. Трансформатор: a – с постоянным коэффициентом,

b – модулированный

 

Нетрудно увидеть, что мощности в обеих связях трансформатора равны

.

Примерами трансформаторов являются редуктор, трансформатор переменного тока, рычаг. Трансформатор может иметь переменный коэффициент передачи, зависящий как от времени, так и от некоторой другой переменной. Такой трансформатор называется модулированным и обозначается как MTF.

Гиратор можно получить из трансформатора, если в одной из его связей поменять местами усилие и поток. Уравнения гиратора имеют вид:

(2.14)

где – коэффициент передачи гиратора.

Гиратор, как и трансформатор, сохраняет мощность, то есть

 

 

Гираторы тоже могут быть модулированными и изображаются, как это показано на рис. 2.3.

Рис. 2.3. Гиратор: a – с постоянным коэффициентом, b – модулированный

 

Отметим, что свойствами гиратора обладает, например, гироскоп, а в радиоэлектронике известно применение специальных устройств, называемых гираторами, с целью замены индуктивностей емкостями.

Гираторы и трансформаторы могут отображать преобразование энергии одной физической природы, а могут отображать также преобра-зование механического движения в электрическое, электрического в магнитное и т.п.

Узел общего усилия (0-узел) может иметь любое количество связей (рис.2.4). Узел получил свое название потому, что усилия во всех его связях равны

. (2.15)

Рис. 2.4. Узлы графа связей: a – узел общего усилия (0 – узел), b – узел общего потока (1 – узел)

 

При этом алгебраическая сумма потоков в связях узла равна нулю:

(2.16)

Учитывая (2.15) и (2.16), можно получить закон сохранения энергии в 0-узле:

(2.17)

Узел общего потока (1-узел) во всем подобен узлу общего усилия, если поменять местами усилия и потоки. Таким образом, для 1-узла:

 

, (2.18)

, (2.19)

. (2.20)

Знаки слагаемых в (2.19) и (2.20) определяются направлением полустрелок в связях.

Узлы общего усилия и потока отображают два возможных способа разветвления или суммирования потоков энергии в физических системах.

 

Физическая интерпретация







Последнее изменение этой страницы: 2017-02-07; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.231.21.160 (0.007 с.)