Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Геометрия Евклида – первая естественно научная теория↑ Стр 1 из 22Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Исторический обзор обоснования геометрии. Геометрия, прежде чем стать аксиоматической теорией, прошла долгий путь эмпирического развития. Первые сведения о геометрии были получены цивилизациями Древнего Востока (Египет, Китай, Индия) в связи с развитием земледелия, ограниченностью плодородных земель и др. В этих странах геометрия носила эмпирический характер и представляла собой набор отдельных «рецептов-правил» для решения конкретных задач. Уже во II тысячелетии до н.э. египтяне умели точно вычислить площадь треугольника, объем усеченной пирамиды, площадь круга, а вавилоняне знали теорему Пифагора. Заметим, что доказательств не было, а указывались правила для вычислений. Греческий период развития геометрии начался в VII-VI вв. до н.э. под влиянием египтян. Отцом греческой математики считается знаменитый философ Фалес (640-548 гг. до н.э.). Фалесу, точнее, его математической школе принадлежат доказательства свойств равнобедренного треугольника, вертикальных углов. В дальнейшем геометром Древней Греции были получены результаты, охватывающие почти все содержание современного школьного курса геометрии. Философская школа Пифагора (570-471 гг. до н.э.) открыла теорему о сумме углов треугольника, доказала теорему Пифагора, установила существование пяти типов правильных многогранников и несоизмеримых отрезков. Демокрит (470-370 гг. до н.э.) открыл теоремы об объемах пирамиды и конуса. Евдокс (410-356 гг. до н.э.) создал геометрическую теорию пропорций (т.е. теорию пропорциональных чисел). Менехм и Аполлоний изучили конические сечения. Архимед (289-212 гг. до н.э.) открыл правила вычисления площади поверхности и объема шара и других фигур. Он же нашел приближенное значение числа π. Особая заслуга древнегреческих ученых состоит в том, что они первыми поставили задачу строгого построения геометрических знаний и решили ее в первом приближении. Проблему поставил Платон (428-348 гг. до н.э.). Аристотелю (384-322 гг. до н.э.) – крупнейшему философу, основателю формальной логики – принадлежит четкое оформление идеи построения геометрии в виде цепи предложений, которые вытекают одно из другого на основе лишь правил логики. Эту задачу пытались решить многие греческие ученые (Гиппократ, Федий). Евклид (330-275 гг. до н. э.) – крупнейший геометр древности, воспитанник школы Платона, жил в Египте (в Александрии). Составленные им «Начала» дают систематическое изложение начал геометрии, выполненное на таком научном уровне, что многие века преподавание геометрии велось по его сочинению. «Начала» состоят из 13 книг (глав): I-VI – планиметрия; VII-IХ – арифметика в геометрическом изложении; X – несоизмеримые отрезки; ХI-ХII – стереометрия. В «Начала» были включены не все сведения, известные в геометрии. Например, в эти книги не вошли: теория конических сечений, кривые высших порядков. Каждая книга начинается с определения тех понятий, которые в ней встречаются. Например, в книге I даны 23 определения. Приведем определения первых четырех понятий: 1 Точка есть то, что не имеет частей. 2 Линия есть длина без ширины. 3 Границы линии суть точки. 4 Прямая есть такая линия, которая одинаково расположена по отношению ко всем своим точкам. Евклид приводит предложения, принимаемые без доказательства, разделяя их на постулаты и аксиомы. Постулатов у него пять, а аксиом – семь. Вот некоторые из них: IV И чтобы все прямые углы были равны. V И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых. Аксиомы I Равные порознь третьему равны между собой. II И если к равным прибавить равные, то получим равные. VII И совмещающиеся равны. Евклид не указал, в чем заключается различие между постулатами и аксиомами. До сих пор нет окончательного решения этого вопроса. Евклид излагает теорию геометрии так, как требовали греческие ученые, особенно Аристотель, т.е. теоремы расположены так, что каждая следующая доказывается только на основе предыдущих. Иначе говоря, Евклид развивает геометрическую теорию строго логическим путем. В этом и заключается историческая заслуга Евклида перед наукой. «Начала» Евклида сыграли огромную роль в истории математики и всей человеческой культуры. Эти книги переведены на все основные языки мира, после 1482 г. они выдержали около 500 изданий. Недостатки системы Евклида. С точки зрения современной математики изложение «Начал» следует признать несовершенным. Назовем основные недостатки этой системы: 1) многие понятия включают такие, которые в свою очередь должны быть определены (например, в определениях 1-4 главы 1 используются понятия ширины, длины, границы, которые также должны быть определены); 2) список аксиом и постулатов недостаточен для построения геометрии строго логическим путем. Например, в этом списке нет аксиом порядка, без которых нельзя доказать многие теоремы геометрии; заметим, что на это обстоятельство обратил внимание Гаусс. В указанном списке отсутствуют также определения понятия движения (совмещения) и свойств движения, т.е. аксиом движения. В списке не хватает также аксиомы Архимеда (одной из двух аксиом непрерывности), которая играет важную роль в теории измерений длин отрезков, площадей фигур и объектов тел. Заметим, что на это обратил внимание современник Евклида Архимед; 3) постулат IV явно лишний, его можно доказать как теорему. Особо отметим пятый постулат. В книге I «Начал» первые 28 предложений доказаны без ссылок на пятый постулат. Попытка минимизировать список аксиом и постулатов, в частности доказать постулат V как теорему, проводилась со времен самого Евклида. Прокл (V в. н. э.), Омар Хайям (1048-1123 гг.), Валлис (XVII в.), Саккери и Ламберт (XVIII в.), Лежандр (1752-1833 гг.) также пытались доказать постулат V как теорему. Их доказательства были ошибочными, но они привели к положительным результатам – к рождению еще двух геометрий (Римана и Лобачевского). Неевклидовы геометрические системы. Н.Лобачевский (1792-1856 гг.), который открыл новую геометрию – геометрию Лобачевского, также начал с попытки доказательства постулата V. Николай Иванович развил свою систему до объема «Начал» в надежде получить противоречие. Не получил, но сделал в 1826 г. правильный вывод: существует геометрия, отличная от геометрии Евклида. На первый взгляд этот вывод кажется недостаточно обоснованным: может быть, развивая его дальше, можно прийти к противоречию. Но этот же вопрос относится и к геометрии Евклида. Иначе говоря, обе геометрии равноправны перед вопросом о логической непротиворечивости. Дальнейшие исследования показали, что из непротиворечивости одной следует непротиворечивость другой геометрии, т.е. имеет место равноправие логических систем. Лобачевский был первым, но не единственным, кто сделал вывод о существовании другой геометрии. Гаусс (1777-1855 гг.) высказал эту идею еще в 1816 г. в частных письмах, но в официальных публикациях заявление не сделал. Три года спустя после публикации результатов Лобачевского (в 1829 г.), т.е. в 1832 г., вышла работа венгра Я. Бойяи (1802-1860 гг.), который в 1823 г. пришел к выводу о существовании другой геометрии, но опубликовал позже и в менее развитом, чем у Лобачевского, виде. Поэтому справедливо, что эта геометрия носит имя Лобачевского. Общему признанию геометрии Лобачевского в значительной степени способствовали работы геометров после Лобачевского. В 1868 г. итальянский математик Э.Бельтрами (1825-1900 гг.) доказал, что на поверхности постоянной отрицательной кривизны (так называемая псевдосфера) имеет место геометрия Лобачевского. Уязвимым местом доказательства непротиворечивости геометрии Лобачевского, основанного на интерпретации Бельтрами, было то, что, как показал Д.Гильберт (1862-1943 гг.), в евклидовом пространстве не существует полной поверхности постоянной отрицательной кривизны без особенностей. Поэтому на поверхности постоянной отрицательной кривизны можно интерпретировать только часть плоской геометрии Лобачевского. Этот недостаток был устранен А.Пуанкаре (1854-1912 гг.) и Ф.Клейном (1849-1925 гг.). Доказательство непротиворечивости геометрии Лобачевского было вместе с тем и доказательством независимости пятого постулата от остальных. Действительно, в случае зависимости геометрия Лобачевского была бы противоречивой, так как она содержала бы два взаимно исключающих утверждения. Дальнейшие исследования евклидовой геометрии показали неполноту системы аксиом и постулатов Евклида. Исследование аксиоматики Евклида завершил в 1899 г. Гильберт. Аксиоматика Гильберта состоит из пяти групп: • аксиомы связи (принадлежности); • аксиомы порядка; • аксиомы конгруэнтности (равенства, совпадения); • аксиомы непрерывности; • аксиома параллельности. Эти аксиомы (всего их 20) относятся к объектам трех родов: точек, прямых, плоскостей, а также к трем отношениям между ними: «принадлежит», «лежит между», «конгруэнтен». Конкретный смысл точек, прямых, плоскостей и отношений не указан. Они косвенно определены через аксиомы. Благодаря этому построенная на основе аксиом Гильберта геометрия допускает различные конкретные реализации. Геометрическая система, построенная на перечисленных аксиомах, называется евклидовой геометрией, так как совпадает с геометрией, изложенной Евклидом в «Началах». Геометрические системы, отличные от евклидовой, называются неевклидовыми геометриями. Согласно общей теории относительности, в пространстве ни та, ни другая не являются абсолютно точными, однако в малых масштабах (земные масштабы являются также достаточно «малыми») они вполне пригодны для описания пространства. Причиной того, что на практике применяются евклидовы формулы, является их простота. Гильберт всесторонне исследовал свою систему аксиом, показал, что она непротиворечива, если не противоречива арифметика (т.е. на самом деле доказана содержательная или так называемая внешняя непротиворечивость). Он завершил многовековые исследования геометров по обоснованию геометрии. Эта работа была высоко оценена и в 1903 г. отмечена премией имени Лобачевского. В современном аксиоматическом изложении геометрии Евклида не всегда пользуются аксиомами Гильберта: учебники по геометрии построены на различных модификациях этой системы аксиом. В XX в. было обнаружено, что геометрия Лобачевского не только имеет важное значение для абстрактной математики как одна из возможных геометрий, но и непосредственно связана с приложениями математики. Оказалось, что взаимосвязь пространства и времени, открытая А.Эйнштейном и другими учеными в рамках специальной теории относительности, имеет непосредственное отношение к геометрии Лобачевского. Предмет математики
Предмет математики нельзя ни подменять формальными логическими схемами, ни низводить до уровня коллекции разрозненных фактов. Математика есть учение об общих формах, свойственных реальному бытию, она создает постоянно развивающиеся теории, пригодные для самых различных запросов естествознания и техники. Именно это позволяет применять математические методы, разработанные при решении задач одной области науки, к совершенно непохожим на них задачам, относящимся к совсем иным областям знания. Известны два подхода к определению предмета математики. Одно определение дано Ф.Энгельсом, другое – коллективом французских математиков под общим псевдонимом Н.Бурбаки. Согласно Ф. Энгельсу, «чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира, стало быть, – весьма реальный материал. Тот факт, что этот материал принимает чрезвычайно абстрактную форму, может лишь слабо затушевывать его происхождение из внешнего мира». Хотя это предложение нельзя считать полным определением математики, поскольку оно не указывает метод, цели изучения математики, но отражает то, что объект изучения создан умом человека не произвольно, а в связи с реальным миром. Второй подход отражает методологические установки Н. Бурбаки, которые также определяют не математику, а только объекты, которые она исследует. Прежде чем привести их определение, отметим, что новый подход к объектам исследования в математике связан с «революцией в аксиоматике». Суть ее состоит в переходе от конкретной содержательной аксиоматики к аксиоматике сначала абстрактной, а затем полностью формализованной. В конкретной содержательной аксиоматике, подобной аксиоматике Евклида, исходные понятия и аксиомы в качестве интерпретации имеют единственную систему хотя и идеализированных, но конкретных объектов. В противоположность этому абстрактная аксиоматика допускает бесчисленное множество интерпретаций. Формализованная аксиоматика возникает на основе абстрактной и отличается, во-первых, точным заданием правил вывода, во-вторых, вместо содержательных рассуждений использует язык символов и формул, в результате чего содержательные рассуждения сводятся к преобразованию одних формул в другие, т. е. к особого рода исчислениям. В соответствии с этим одни и те же аксиомы могут описывать свойства и отношения различных по своему конкретному содержанию объектов. Эта фундаментальная идея лежит в основе понятия абстрактной структуры. Н.Бурбаки выделяют три основных типа структур, которые играют важную роль при построении ими современной математики. Алгебраические структуры. Примерами таких структур являются группы, кольца и поля. Основные характеристики алгебраической структуры: задание на некотором множестве А конечного числа операций с соответствующими свойствами, описываемых системой аксиом. В качестве элементов множества А могут выступать как математические объекты (числа, матрицы, перемещения, векторы), так и нематематические. Структуры порядка характеризуются тем, что на рассматриваемом множестве задается отношение порядка (сравнение на числовых множествах), для которого выполняются следующие свойства: рефлексивность, симметричность, транзитивность. Топологические структуры. Множество М обладает топологической структурой, если каждому его элементу тем или иным способом отнесено семейство подмножеств из М, называемых окрестностями этого элемента, причем эти окрестности должны удовлетворять определенным аксиомам (аксиомам топологических структур). С помощью топологических структур точно определяются такие понятия, как «окрестность», «предел», «непрерывность». Кроме основных трех типов структур (порождающих), в математике приходится рассматривать сложные структуры, где порождающие структуры органически связываются с помощью объединяющей системы аксиом. Например, множество действительных чисел является сложной структурой, в которую одновременно входят три основные порождающие структуры. Общей чертой различных понятий, объединенных родовым названием «математическая структура», является то, что они применимы ко множеству элементов, природа которых не определена. Построить аксиоматическую теорию структуры – значит вывести логические следствия из аксиом структуры, отказавшись от каких-либо других предложений относительно рассматриваемых элементов, от всяких гипотез относительно их «природы». На основе сказанного Н.Бурбаки делают вывод: «В своей аксиоматической форме математика представляется скоплением абстрактных форм – математических структур, и оказывается (хотя по существу и неизвестно почему), что некоторые аспекты экспериментальной действительности как будто в результате предопределения укладываются в некоторые из этих форм». Итак, по Н.Бурбаки, математика – это «скопление математических структур», не имеющих к действительности никакого отношения. Следует сказать, что этот взгляд на математику разделялся многими учеными, которые считали, что определение Ф. Энгельса устарело. Накопленный в XVII и XVIII вв. огромный фактический материал привел к необходимости углубленного логического анализа и объединения его с новых точек зрения. Связь математики с естествознанием приобретает все более сложные формы. Новые теории стали возникать не только в результате непосредственных запросов практики, естествознания и техники, но также из внутренних потребностей самой математики. Наиболее важные из них: развитие теории функций, теории групп, связанной с исследованием проблемы разрешимости алгебраических уравнений в радикалах, создание неевклидовых геометрий. Вторая особенность этого периода развития математики связана со значительным расширением области ее приложений. Если до этого математика применялась в таких разделах физики, как механика и оптика, то теперь ее результаты находят приложение в электродинамике, теории магнетизма, термодинамике. Резко возросли потребности техники в математике: баллистика, машиностроение и др. Третья особенность математики XIX в. обусловлена усиленным вниманием к вопросам обоснования, критического пересмотра исходных положений (аксиом), построению строгой системы определений и доказательств, а также к критическому рассмотрению логических приемов, употребляемых при этих доказательствах. Г. Рузавин так пишет о математике этого периода: «Если раньше основным предметом ее изучения были метрические количественные отношения между величинами и пространственными формами, то, начиная с середины XIX в. она все больше и больше обращается к анализу взаимосвязей неметрической природы». Такое расширение области исследования математики сопровождалось возрастанием абстрактности ее понятий и теорий. Революционный переворот во взглядах на математику был связан как раз с ее обоснованием, новым пониманием аксиоматического метода. Открытие в 1826 г. Н.Лобачевским того, что замена пятого постулата Евклида о параллельных его отрицанием («Через точку вне прямой проходит более одной прямой, не пересекающей данную»), и выводы из системы аксиом абсолютной геометрии (где выполняются все аксиомы Евклида, кроме аксиомы параллельности) и аксиомы параллельности Лобачевского не привели к логическим погрешностям. Это развило столь же стройную и богатую содержанием геометрию, как и геометрия Евклида, послужило толчком в изменении взглядов на математику. Сразу встал вопрос о необходимости обоснования новой геометрии, исследовании ее непротиворечивости (из данной системы аксиом нельзя получить двух взаимоисключающих выводов). В этой связи получает дальнейшее развитие аксиоматический метод: 1) решается проблема непротиворечивости, полноты и независимости системы аксиом; 2) появляется новый взгляд на аксиоматическую теорию как бессодержательную, формально-логическую систему. Решение этих проблем было предложено Д. Гильбертом. Новый взгляд на аксиоматический метод в корне изменил прежние представления о геометрии как полуэмпирической науке. Из открытий неевклидовых геометрий и построения их интерпретаций следовало, что евклидова и неевклидовы геометрии не представляют непосредственное описание эмпирических свойств реального физического пространства, а являются абстрактными системами утверждений, истинность которых может быть проверена после соответствующей конкретной интерпретации. Таким образом, подход Н.Бурбаки к определению математики как «скоплению абстрактных, бессодержательных, математических структур» был предопределен новым пониманием аксиоматического метода. Однако подход Н.Бурбаки встретил и негативное отношение, поскольку они не считали нужным выяснять отношение рассматриваемых структур к действительному миру. Не имея возможности описать различные оценки философов и математиков и позиции Н.Бурбаки, остановимся на точке зрения ведущих отечественных математиков – А.Колмогорова, А.Александрова, В.Гнеденко. Они считают, что во времена Энгельса математика изучала количественные отношения между величинами и пространственными формами. Теперь она поднялась до изучения абстрактных структур и категорий. Но на этом основании нельзя считать, что объект изучения математики стал иным, что вместо количественного аспекта действительного мира математика стала исследовать нечто принципиально иное, что современный этап ее развития не связан с предшествующими этапами. В действительности дело заключается в том, что качественные изменения, происшедшие в математике, дают ей возможность исследовать количественные отношения глубже и шире. А.Колмогоров приходит к выводу, что круг количественных отношений и пространственных форм, изучаемых математикой, чрезвычайно расширяется: в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, все разнообразие форм пространств любого числа измерений и т.п. При таком широком понимании терминов «количественные отношения» и «пространственные формы» определение математики как науки о количественных отношениях и пространственных формах действительного мира применимо и на современном этапе ее развития. Эту позицию разделяет и А.Александров: в математике рассматриваются не только формы и отношения, непосредственно абстрагированные из действительности, но и логически возможные, определяемые на основе уже известных форм и отношений. Б. Гнеденко обращает внимание на то, что, хотя любая ветвь современной математики действительно изучает математические структуры, данное Н.Бурбаки определение отнюдь не находится в антагонистических отношениях с определением Ф.Энгельса, а лишь с определенных позиций его дополняет. Подводя итог сказанному, можно заключить, что подход к определению математики через математические структуры представляет собой выражение определенного этапа математического познания. Математика была и остается определенным «инструментом» познания мира, его пространственных форм и количественных отношений. В настоящее время, как уже отмечалось, этот «инструмент» проникает в изучение все более сложных процессов и явлений, в том числе и неметрической природы. Без осознания этого фундаментального философского, методологического положения не может быть сформировано целостное представление об общей картине мира. Математика претендует на статус «особой» науки, изначально превышающей все прочие по уровню точности, истинности и непротиворечивости своих фундаментальных положений. В сфере конечных величин математика действительно относительно точна и непротиворечива; этого достаточно для более или менее адекватного количественного моделирования самых различных конечных по размерности предметных областей. Что же касается сферы бесконечного, то здесь у современной математики есть свои противоречия, которые могут быть преодолены лишь совместными усилиями математиков, философов и логиков.
|
||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 1015; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.234.182 (0.011 с.) |