Первая интерполяционная формула Ньютона 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Первая интерполяционная формула Ньютона



Пусть для функции заданы значения для равноотстоящих узлов , где - шаг интерполяции.

Необходимо подобрать полином

(3)

Условия (1) эквивалентны тому, что

, при .

Следуя Ньютону, будем искать полином в виде

(4)

Т.о. задача сводится к определению коэффициентов в выражении (4).

Полагая , получим .

Далее находим первую конечную разность и полагая , получим

Откуда:

Беря затем вторые разности и т.д., получаем:

Введем в рассмотрение новую переменную

- число шагов, необходимых для достижения точки из точки

(), получим

(5)

Это и есть первая интерполяционная формула Ньютона, которая применяется для интерполирования функций , в окрестности начального значения , где q мало по абсолютной величине!

Если в (5) положить n=1, то получим формулу линейного интерполирования

(6)

При n=2 – формулу параболического или квадратичного интерполирования.

Если дана неограниченная таблица , то n выбирают так, чтобы .

Если таблица конечна, то n не может превышать k-1, где k – число строк таблицы.

При применении 1-ой интерполяционной формулы Ньютона удобно пользоваться горизонтальной таблицей разностей.

Пример: Построить на отрезке [3,5;3,7] интерполяционный полином Ньютона для функции , заданной таблицей, с шагом h=0,05.

3,50 3,55 3,60 3,65 3,70
33,115 34,813 36,598 38,475 40,447

 

 

Решение:составляем таблицу разностей

 

3,50 3,55 3,60 3,65 3,70 33,115 34,813 36,598 38,475 40,447 1,698 1,785 1,877 1,972 0,087 0,092 0,095 0,005 0,003  

 

Т.к. то n=3.

или

где

Можно упорядочить полином по степеням х, подставив значение q.

 

2. Вторая интерполяционная формула Ньютона.

Для интерполирования функции в конце таблицы применяется вторая интерполяционная формула Ньютона.

Вывод формулы аналогичен выводу 1-ой интерполяционной формулы, только теперь коэффициент полинома (коэффициент ) определяется из равенств

(8)

Введем обозначение

Тогда

и так далее.

В результате получим:

(9)

Пример: дана таблица значений семизначных логарифмов:

 

Х У
  3,0000000 3,0043214 3,0086002 3,0128372 3,0170333 3,0211893

 

Найти lg1044

 

Решение: составляем таблицу конечных разностей

 

1050 3,0000000 3,0043214 3,0086002 3,0128372 3,0170333 3,0211893 41560 -426 -418 -409 -401 8

Примем Тогда .

По формуле (3) получем:

В результате все знаки верные.

Т.о. первая интерполяционная формула Ньютона применяется для интерполирования вперед и экстраполирования назад (за границы интервала); Вторая формула – для интерполирования назад и экстраполирования вперед.

Операция экстраполирования менее точна.

Оценки погрешностей интерполяционных формул Ньютона

Если узлы интерполирования - равноотстоящие причем то, пологая , получим остаточные члены для 1-ой и 2-ой интерполяционных формул Ньютона:

(10)

, (11)

Где - некоторое промежуточное значение между узлом интерполирования и точкой .

(Для интерполирования , для экстраполирования возможно, что ).

При расчетах порядок n разностей выбирается таким, что . Учитывая, что h достаточно мало и и что

можно положить:

(12)

При этом остаточные члены интерполяционных формул Ньютона будут равны

Пример: В пятизначных таблицах логарифмов даются логарифмы целых чисел от х=1000 до х=10000 с предельной абсолютной погрешностью, равной . Возможно ли линейное программирование с той же степенью точности?

Решение: Т.к. , то где

Отсюда

, а

Из формулы (1) при n=11 и h=1 получаем:

Т.к. (интерполируем не далее, чем на 1 шаг), то

Окончательно получаем:

Т.о. погрешность интерполирования не превосходит погрешностей исходных данных!

Линейное интерполирование (h=1) возможно.

Интерполяционные формулы Ньютона используют лишь значения функций, лежащие лишь по одну сторону от выбранного начального значения Для интерполирования в середине таблицы удобно применять формулы, содержащие как последующие, так и предшествующие значения функций по отношению к начальному ее значению.

При этом используются центральные разности

Интерполяционные формулы, построенные с помощью центральных разностей - это формулы Гаусса, Стирлинга, Бесселя.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 986; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.27.244 (0.013 с.)