Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Курс «Математические методы в психологии»

Поиск

(Материалы для самостоятельного изучения студентам психологам и социальным работникам)

Лекция № 2

СТАТИСТИЧЕСКИЙ АНАЛИЗ

ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Вопросы:

1. Методы первичной статистической обработки результатов эксперимента

2. Методы вторичной статистической обработки результатов эксперимента

 

Краткое содержание

 

Методы первичной статистической обработки результатов эксперимен­та.

Общее представление о методах статистического анализа эксперименталь­ных данных, назначение этих методов. Деление статистических методов на первичные и вторичные. Основные показатели, получаемые в результате пер­вичной обработки экспериментальных данных. Вычисление средней арифме­тической. Определение дисперсии. Установление примерного распределения данных. Определение моды. Характеристика нормального распределения. Вы­числение интервалов.

Методы вторичной статистической обработки результатов эксперимента.

Способы вторичной статистической обработки результатов исследования. Ре­грессионное исчисление. Сравнение средних величин разных выборок. Срав­нение частотных распределений данных. Сравнение дисперсий двух выборок. Установление корреляционных зависимостей и их интерпретация. Понятие о факторном анализе как методе статистической обработки.

Способы табличного и графического представления результатов экспе­римента.

Виды таблиц и их построение. Графическое представление экспери­ментальных данных. Гистограммы и их применение на практике.

 

Вопрос 1

МЕТОДЫ ПЕРВИЧНОЙ СТАТИСТИЧЕСКОЙ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Методами статистической обработки результатов экспери­мента называются математические приемы, формулы, способы количественных расчетов, с помощью которых показатели, по­лучаемые в ходе эксперимента, можно обобщать, приводить в си­стему, выявляя скрытые в них закономерности.

Речь идет о та­ких закономерностях статистического характера, которые су­ществуют между изучаемыми в эксперименте переменными ве­личинами.

1. Некоторые из методов математико-статистического анализа позволяют вычислять так называемые элементарные математические статистики, характеризующие выборочное распреде­ление данных, например

* выборочное среднее,

*выборочная диспер­сия,

*мода,

*медиана и ряд других.

2. Иные методы математической статистики, например

дисперсионный анализ,

регрессионный ана­лиз, позволяют судить о динамике изменения отдельных статис­тик выборки.

3. С помощью третьей группы методов, скажем,

* кор­реляционного анализа,

факторного анализа,

методов сравнения выборочныеа данных, можно достоверно судить о статистических связях,

существующих между переменными величинами, кото­рые исследуют в данном эксперименте.

Все методы математико-статистического анализа условно де­лятся на первичные и вторичные1.

1 Приводимые здесь определения и высказывания не всегда являются до­статочно строгими с точки зрения теории вероятностей и математической ста­тистики как сложившихся областей современной математики. Это сделано для лучшего понимания данного текста студентами, не подготовленными в облас­ти математики:

Первичными называют мето­ды, с помощью которых можно получить показатели, непосред­ственно отражающие результаты производимых в эксперимен­те измерений.

Соответственно под первичными статистически­ми показателями имеются в виду те, которые применяются в са­мих психодиагностических методиках и являются итогом на­чальной статистической обработки результатов психодиагности­ки.

Вторичными называются методы статистической обработки, с помощью которых на базе первичных данных выявляют скры­тые в них статистические закономерности.

 

К первичным методам статистической обработки относят, на­пример,

* определение выборочной средней величины,

* выбороч­ной дисперсии,

* выборочной моды и

* выборочной медианы.

В чис­ло вторичных методов обычно включают

*корреляционный ана­лиз,

*регрессионный анализ,

*методы сравнения первичных ста­тистик у двух или нескольких выборок.

Рассмотрим методы вычисления элементарных математичес­ких статистик, начав с выборочного среднего.

ВЫБОРОЧНОЕ СРЕДНЕЕ

Выборочное среднее значение как статистический показатель представляет собой среднюю оценку изучаемого в эксперименте психологического качества.

Эта оценка характеризует степень его развития в целом у той группы испытуемых, которая была под­вергнута психодиагностическому обследованию. Сравнивая не­посредственно средние значения двух или нескольких выборок, мы можем судить об относительной степени развития у людей, составляющих эти выборки, оцениваемого качества.

Выборочное среднее определяется при помощи следующей формулы:

 

где

хср —выборочная средняя величина или среднее арифметичес­кое значение по выборке;

п — количество испытуемых в выбор­ке или частных психодиагностических показателей, на основе ко­торых вычисляется средняя величина;

xk частные значения по­казателей у отдельных испытуемых. Всего таких показателей п, поэтому индекс k данной переменной принимает значения от 1 до п;

— принятый в математике знак суммирования величин тех переменных, которые находятся справа от этого знака.

Выра­жение соответственно означает сумму всех х с индексом k от 1 до n.

Пример. Допустим, что в результате применения психодиаг­ностической методики для оценки некоторого психологическо­го свойства у десяти испытуемых мы получили следующие част­ные показатели степени развитости данного свойства у отдель­ных испытуемых: х1= 5, х2 = 4, х3 = 5, х4 = 6, х5 = 7, х6 = 3, х7 = 6, х8= 2, х9= 8, х10 = 4. Следовательно, п = 10, а индекс k меняет свои значения от 1 до 10 в приведенной выше формуле. Для данной выборки среднее значение1, вычисленное по этой формуле, бу­дет равно:

 

1 В дальнейшем, как это и принято в математической статистике, с целью сокращения текста мы будем опускать слова «выборочное» и «арифметичес­кое» и просто говорить о «среднем» или «среднем значении».

 

В психодиагностике и в экспериментальных психолого-пе­дагогических исследованиях среднее, как правило, не вычисля­ется с точностью, превышающей один знак после запятой, т.е. с большей, чем десятые доли единицы.

В психодиагностических обследованиях большая точность расчетов не требуется и не име­ет смысла, если принять во внимание приблизительность тех оце­нок, которые в них получаются, и достаточность таких оценок для производства сравнительно точных расчетов.

ДИСПЕРСИЯ

Дисперсия как статистическая, величина характеризует, насколько частные значения отклоняются от средней величины в данной выборке.

Чем больше дисперсия, тем больше отклонения или разброс данных. Прежде чем представлять формулу для рас­четов дисперсии, рассмотрим пример. Воспользуемся теми пер­вичными данными, которые были приведены ранее и на основе которых вычислялась в предыдущем примере средняя величи­на. Мы видим, что все они разные и отличаются не только друг от друга, но и от средней величины. Меру их общего отличия от средней величины и характеризует дисперсия. Ее определяют для того, чтобы можно было отличать друг от друга величины, име­ющие одинаковую среднюю, но разный разброс.

Представим се­бе другую, отличную от предыдущей выборку первичных значе­ний, например такую: 5, 4, 5, 6, 5, 6, 5, 4, 5, 5. Легко убедиться в том, что ее средняя величина также равна 5,0. Но в данной вы­борке ее отдельные частные значения отличаются от средней го­раздо меньше, чем в первой выборке. Выразим степень этого отличия при помощи дисперсии, которая определяется по следую­щей формуле:

 

где выборочная дисперсия, или просто дисперсия;

выражение, означающее, что для всех xk от перво­го до последнего в данной выборке необходимо вычислить раз­ности между частными и средними значениями, возвести эти раз­ности в квадрат и просуммировать;

п — количество испытуемых в выборке или первичных зна­чений, по которым вычисляется дисперсия.

 

Определим дисперсии для двух приведенных выше выборок частных значений, обозначив эти дисперсии соответственно ин­дексами 1 и 2:

 

Мы видим, что дисперсия по второй выборке (0,4) значитель­но меньше дисперсии по первой выборке (3,0). Если бы не было дисперсии, то мы не в состоянии были бы различить данные вы­борки.

 

ВЫБОРОЧНОЕ ОТКЛОНЕНИЕ

 

Иногда вместо дисперсии для выявления разброса частных дан­ных относительно средней используют производную от дисперсии величину, называемую выборочное отклонение. Оно равно квадрат­ному корню, извлекаемому из дисперсии, и обозначается тем же

самым знаком, что и дисперсия, только без квадрата—

 

МЕДИАНА

Медианой называется значение изучаемого признака, кото­рое делит выборку, упорядоченную по величине данного призна­ка, пополам.

Справа и слева от медианы в упорядоченном ряду остается по одинаковому количеству признаков. Например, для выборки 2, 3,4, 4, 5, 6, 8, 7, 9 медианой будет значение 5, так как слева и справа от него остается по четыре показателя. Если ряд включает в себя четное число признаков, то медианой будет сред­нее, взятое как полусумма величин двух центральных значений ряда. Для следующего ряда 0, 1, 1, 2, 3, 4, 5, 5, 6, 7 медиана будет равна 3,5.

Знание медианы полезно для того, чтобы установить, явля­ется ли распределение частных значений изученного признака симметричным и приближающимся к так называемому нормаль­ному распределению. Средняя и медиана для нормального рас­пределения обычно совпадают или очень мало отличаются друг от друга.

Если выборочное распределение признаков нормаль­но, то к нему можно применять методы вторичных статистичес­ких расчетов, основанные на нормальном распределении данных. В противном случае этого делать нельзя, так как в расчеты могут вкрасться серьезные ошибки.

Если в книге по математической статистике, где описывает­ся тот или иной метод статистической обработки, имеются ука­зания на то, что его можно применять только к нормальному или близкому к нему распределению признаков, то необходимо неукоснительно следовать этому правилу и полученное эмпиричес­кое распределение признаков проверять на нормальность.

Если такого указания нет, то статистика применима к любому распре­делению признаков. Приблизительно судить о том, является или не является полученное распределение близким к нормальному, можно, построив график распределения данных, похожий на те, которые представлены на рис. 72. Если график оказывается бо­лее или менее симметричным, значит, к анализу данных можно применять статистики, предназначенные для нормального рас­пределения. Во всяком случае, допустимая ошибка в расчетах в данном случае будет относительно небольшой.

Приблизительные картины симметричного и несимметрич­ного распределений признаков показаны на рис. 72, где точками т1 и т2 на горизонтальной оси графика обозначены те величины признаков, которые соответствуют медианам, а х1 и х2 те, ко­торые соответствуют средним значениям.

 

Рис. 72. Графики симметричного и несимметричного распределения признаков: 1 – симметричное распределение (все относящиеся к нему элементарные статистики обозначены с помощь индекса 1); 11 – несимметричное распределение (его первичные статистики отмечены на графике индексом 2).

МОДА

Мода еще одна элементар­ная математическая статистика и характеристика распределе­ния опытных данных. Модой называют количественное зна­чение исследуемого признака, наиболее часто встречающееся в выборке. На графиках, пред­ставленных на рис. 72, моде со­ответствуют самые верхние точки кривых, вернее, те значе­ния этих точек, которые располагаются на горизонтальной оси.

Для симметричных распределений признаков, в том числе для нормального распределения, значения моды совпадают со значениям среднего и медианы. Для других типов распре­делений, несимметричных, это не характерно.

К примеру, в по­следовательности значений признаков 1, 2, 5, 2, 4, 2, 6, 7, 2 модой является значение 2, так как оно встречается чаще других значе­ний — четыре раза.

ИНТЕРВАЛ

Иногда исходных частных первичных данных, которые под­лежат статистической обработке, бывает довольно много, и они требуют проведения огромного количества элементарных ариф­метических операций. Для того чтобы сократить их число и вмес­те с тем сохранить нужную точность расчетов, иногда прибегают к замене исходной выборки частных эмпирических данных на интервалы.

Интервалом называется группа упорядоченных по ве­личине значений признака, заменяемая в процессе расчетов сред­ним значением.

Пример. Представим следующий ряд частных признаков: О, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11. Этот ряд включает в себя 30 значений.

Разобьем представ­ленный ряд на шесть подгрупп по пять признаков в каждом.

*Пер­вая подгруппа включит в себя первые пять цифр,

*вторая — сле­дующие пять и т.д.

Вычислим средние значения для каждой из пяти образованных подгрупп чисел. Они соответственно будут равны 1,2; 3,4; 5,2; 6,8; 8,6; 10,6.

Таким образом, нам удалось свести исходный ряд, включающий тридцать значений, к ряду, содер­жащему всего шесть значений и представленному средними ве­личинами. Это и будет интервальный ряд, а проведенная проце­дура — разделением исходного ряда на интервалы.

Теперь все статистические расчеты мы можем производить не с исходным рядом признаков, а с полученным интервальным рядом, и ре­зультаты в равной степени будут относиться к исходному ряду. Однако число производимых в ходе расчетов элементарных арифметических операций будет гораздо меньше, чем количест­во тех операций, которые с этой же целью пришлось бы проделать в отношении исходного ряда признаков.

На практике, со­ставляя интервальный ряд, рекомендуется руководствоваться следующим правилом: если в исходном ряду признаков больше чем тридцать, то этот ряд целесообразно разделить на пять-шесть интервалов и в дальнейшем работать только с ними.

Для проверки сказанного проведем пробное вычисление сред­него значения по приведенному выше ряду, составляющему трид­цать чисел, и по ряду, включающему только интервальные средние значения. Полученные цифры с точностью до двух знаков после запятой будут соответственно равны 5,97 и 5,97, т.е. явля­ются одинаковыми.



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 444; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.2.239 (0.009 с.)