Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Оценка эффективности фискальной политики.

Поиск

По мнению большинства предпринимателей и экономистов, один из главных факторов, сдерживающих в России рост производственной активности, – нерациональная фискальная политика, проводимая государством на протяжении практически всех 90-х годов. Считается, что то налоговое бремя, которое установило государство, было явно чрезмерным и не позволяло производственным структурам вести нормальную экономическую деятельность. Такой фискальный нажим повлек за собой целый ряд негативных явлений. Во-первых, оказалась скованной предпринимательская активность. Во-вторых, многие затратоемкие отрасли, наиболее важные и приоритетные с общегосударственных позиций, автоматически отсеклись от прибыльных сфер деятельности и начали постепенно стагнировать, в результате произошла своеобразная структурная деградация российской экономики. В-третьих, нестерпимый налоговый пресс, стимулируя уклонение от налогов и развитие теневого сектора экономики, обострил бюджетные проблемы страны.

 

В сложившихся условиях актуализируются задачи оценки эффективности действующей системы фискального регулирования и отыскания путей ее оптимизации. Решение их предполагает множество различных подходов, среди которых, в частности, можно отметить качественный метод решения проблемы. Он заключается в упорядочении и совершенствовании всего налогового законодательства. Необходимо прежде всего отказаться от практики начисления налогов на затраты (в настоящее время именно таким образом изымается налог на добавленную стоимость) и перейти к схеме, предусматривающей уплату налогов по мере поступления средств на счет предприятия. Уже этих двух моментов в действующей системе фискального регулирования достаточно, чтобы разрушить вполне нормальную экономическую структуру.

 

 

Однако этот подход, направленный на “расшивку” всей системы бухгалтерского учета для изменения самого механизма изъятия налогов, не предполагает методов макроанализа. В противовес ему количественный метод оптимизации налоговой системы нацелен на определение максимально рациональных налоговых ставок в рамках действующего фискального механизма. Понятно, что он предполагает оптимизацию величин как отдельных налоговых ставок, так и совокупного налогового бремени как на юридических, так и физических лиц. Данный метод кардинально не меняет действующей системы налогообложения и, по сути, нацелен лишь на корректировку количественных фискальных параметров. Понятно, что это направление совершенствования системы государственного регулирования предполагает применение широкого спектра микро- и макроэкономических методов и моделей.

 

Оценить эффективность фискальной политики можно с разных позиций, а именно с позиции экономического субъекта (источника налогообложения) и государства (получателя налогов). С точки зрения юридических и физических лиц, оценка эффективности фискальной политики государства не представляет научного интереса, так как здесь действует прямолинейная и примитивная логика: чем больше налоговых изъятий, тем хуже. При оценке фискальной политики с точки зрения государства возможны два аспекта анализа: оценка эффективности фискальной политики, влияющей на производственную активность экономической системы и на наполненность доходной части государственного бюджета. Как правило, эти две оценки вступают в противоречие, и фискальная политика, эффективная с точки зрения второго критерия, может быть совершенно неэффективной с точки зрения первого. Кроме того, даже в рамках каждого из этих критериев фискальная политика может иметь неоднозначный результат, т. е. в развитии исследуемых процессов имеются точки перегиба.

 

Именно нелинейная зависимость объемов производства и налоговых поступлений от налогового бремени и есть предмет изучения, когда оценивается эффективность фискальной системы. Как правило, все конкретные расчеты параметров эффективности ведутся в рамках так называемой кривой А. Лаффера, в соответствии с которой функциональная зависимость налоговых доходов государства от уровня налогового бремени описывается параболой с точкой максимума.

 

Постановка проблемы и методология исследования. В последнее время проводится много исследований, в которых делается попытка оценить эффективность отдельных сторон фискальной системы с помощью отыскания точек Лаффера для конкретных видов налоговых сборов. В работах [1-8] рассматриваются налоги на добавленную стоимость и прибыль, начисления на заработную плату, налог на имущество, подоходный налог и т.п. Вместе с тем концепция кривой Лаффера изначально создавалась применительно к понятию совокупного налогового бремени, т. е. всей массы налоговых отчислений. Далее придерживаемся именно такого понимания проблемы и, следовательно, будем отыскивать точки Лаффера для усредненного макроэкономического показателя налогового бремени. Под последним мы будем понимать долю налоговых поступлений в консолидированный бюджет страны в объеме валового внутреннего продукта (ВВП) (в более общем случае можно использовать и показатель валового национального продукта).

 

Эконометрические (статистические) методы оценки эффективности фискальной политики. В общем случае поставленную задачу можно решить эконометрическими способами, в основе которых лежит постулат о том, что объем производства нелинейно зависит от величины налогового бремени. В этом случае объем ВВП достаточно аппроксимировать полиномиальной регрессией следующего вида:

 

, (1)

 

где b i – параметры, подлежащие статистической оценке на основе ретроспективных динамических рядов.

 

Учитывая формулу (1) и величину массы налогов:

 

, (2)

 

можно записать следующее соотношение:

 

(3)

 

Для проведения соответствующих расчетов весь информационный массив должен быть представлен динамическими рядами двух “первичных” показателей – X и T. Зная эти величины, по формуле (2) можно рассчитать ретроспективный ряд для такого “вторичного” показателя, как q. В дальнейшем в результате вычислительных экспериментов отыскивается полином (1) соответствующей степени. Желательно, чтобы это была квадратичная или, в крайнем случае, кубическая функция, так как более высокий порядок полинома впоследствии осложнит отыскание точек Лаффера (полиномы третьей степени и выше приводят к “размножению” стационарных точек производственной кривой X=X(q) и предполагают дополнительную процедуру их выбраковки и фильтрации для выяснения, какие именно из них являются точками Лаффера).

 

Учитывая специфику операций сглаживания рядов, эконометрические модели типа (1) имеют ряд очевидных особенностей. Во-первых, для получения значений параметров b i необходимо иметь достаточно длинные и “хорошие” в статистическом смысле динамические ряды. Во-вторых, параметры b i постоянны во времени, что в некоторых случаях приводит к неизменности значений точек Лаффера (в частности, такая ситуация возникает для квадратичной функции). Это не совсем правомерно, так как более логично было бы предположить, что точки Лаффера являются “плавающими” во времени величинами.

 

Комментируя предлагаемый выше подход, который базируется на примитивной полиномиальной аппроксимации процесса экономического роста налоговой функцией (1), следует сразу оговориться: в данном случае решается чисто техническая, инструментальная проблема без учета внутрисистемных экономических связей. Явного моделирования функциональных свойств системы не ведется, однако они косвенно улавливаются зависимостью (1). При этом, хотя сама функциональная зависимость (1) нелинейна, регрессия (1), наоборот, линейна относительно входящих в нее параметров и, следовательно, никаких особых технических сложностей при ее идентификации не возникает. В этом состоит один из существенных плюсов предлагаемой модельной схемы.

 

Аналитические (алгебраические) методы оценки эффективности фискальной политики. Учитывая, что для российской экономики еще не сформированы ретроспективные динамические ряды, достаточные для проведения корректных эконометрических расчетов, можно воспользоваться другими способами оценки эффективности фискальной политики. К числу подобных альтернативных подходов можно отнести методы точечно-кусочной аппроксимации анализируемого процесса с помощью степенной функции, которые принципиально отличаются от эконометрических методов, основанных на интервальной аппроксимации. В этом случае для каждой отчетной точки (в нашем случае года) строится своя функция X=X(q) с соответствующими значениями входящих в нее параметров. Так как число параметров функции может быть больше одного, то для их однозначной оценки необходимо использовать дополнительную информацию о приростах переменных во времени. Учитывая нелинейность связи между объемом производства и уровнем налогового бремени, в качестве аппроксимирующей функции следует брать квадратичный полином. Здесь возможны два варианта расчета: обобщенный трехпараметрический и упрощенный двухпараметрический.

Кривая Лоренца.

 

Кривая Лоренца — это графическое изображение функции распределения. Она была предложена американским экономистом Максом Отто Лоренцем в 1905 году как показатель неравенства в доходах населения. В таком представлении она есть изображение функции распределения, в котором аккумулируются доли численности и доходов населения. В прямоугольной системе координат кривая Лоренца является выпуклой вниз и проходит под диагональю единичного квадрата, расположенного в I координатной четверти.

 

Каждая точка на кривой Лоренца соответствует утверждению вроде «20 самых бедных процентов населения получают всего 7 % дохода». В случае равного распределения каждая группа населения имеет доход, пропорциональный своей численности. Такой случай описывается кривой равенства (line of perfect equality), являющейся прямой, соединяющей начало координат и точку (1;1). В случае полного неравенства (когда лишь один член общества имеет доход) кривая (line of perfect inequality) сначала «прилипает» к оси абсцисс, а потом из точки (1;0) «взмывает» к точке (1;1). Кривая Лоренца заключена между кривыми равенства и неравенства.

 

Кривые Лоренца применяют для распределений не только доходов, но и имущества домохозяйств, долей рынка для фирм в отрасли, природных ресурсов по государствам. Встретить кривую Лоренца можно и за пределами экономической науки.

На данном рисунке изображена кривая Лоренца и индекс Робин Гуда, приблизительно равный 0.25, что означает, что при перераспределении четверти общего дохода данного общества можно добиться равенства в доходах.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 545; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.21.126 (0.009 с.)