Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 4.2. Концепции квантовой механики

Поиск

O Основные понятия

Корпускулярно-волновой дуализм как всеобщее свойство материи. Мысленный эксперимент «микроскоп Гейзенберга». Соотношение неопределенностей координата-импульс (скорость). Принцип дополнительности Статистический характер квантового описания природы.

& Краткое содержание

Корпускулярно-волновой дуализм как всеобщее свойство материи

Мысленный эксперимент «микроскоп Гейзенберга»

Соотношение неопределенностей координата-импульс (скорость)

Принцип дополнительности как утверждение о том, что:

- невозможны невозмущающие измерения (измерение одной величины делает невозможным или неточным измерение другой, дополнительной к ней величины)

- полное понимание природы микрообъекта требует учёта как его корпускулярных, так и волновых свойств, хотя они не могут проявляться в одном и том же эксперименте

- (в широком смысле) для полного понимания любого предмета или процесса необходимы несовместимые, но взаимодополняющие точки зрения на него

Статистический характер квантового описания природы

 

В начале ХХ в. физика пришла к заключению о существовании в природе еще одной формы материи - кванта (фотона), обладающего одновременно свойствами волны и корпускулы (Планк, Эйнштейн). Попытки объяснить законы теплового излучения, законы фотоэффекта привели к созданию представления о порции энергии, которая излучается атомами в виде электромагнитного кванта. М. Планк ввел понятие кванта действия (постоянная Планка), в котором заложена идея дискретности электромагнитного излучения.

Впервые физика столкнулась с необходимостью описания противоположных корпускулярных (дискретных) и континуальных (непрерывных) свойств в рамках одного объекта. Многочисленные попытки такого симбиоза не увенчались успехом, и была разработана концепция дополнительности свойств материи.

Принцип дополнительности – это утверждение о том, что:

- невозможны невозмущающие измерения (измерение одной величины делает невозможным или неточным измерение другой, дополнительной к ней величины)

- полное понимание природы микрообъекта требует учёта как его корпускулярных, так и волновых свойств, хотя они не могут проявляться в одном и том же эксперименте

- (в широком смысле) для полного понимания любого предмета или процесса необходимы несовместимые, но взаимодополняющие точки зрения на него

Принцип дополнительности Н. Бора – это концептуально новый подход к вопросу измерения параметров исследуемых объектов - микрообъектов).

Принцип дополнительности по отношению к свойствам света носит название корпускулярно-волнового дуализма. В 1924 году этот принцип распространен Луи де Бройлем на частицы вещества.

Де Бройль выдвинул гипотезу о двойственном характере поведения микрочастиц. Согласно этой гипотезе: всем микрообъектам присущи и корпускулярные, и волновые свойства; в зависимости от внешних условий микрообъекты проявляют либо свойства частиц, либо волновые свойства. Таким образом, корпускулярно-волновой дуализм приобретает универсальный характер: не только фотоны, но и электроны, и любые другие микрочастицы наряду с корпускулярными обладают и волновыми свойствами.

Но микрообъект поворачивается к наблюдателю либо волновой, либо корпускулярной стороной. Экспериментатор не может наблюдать одновременно и волновые, и корпускулярные свойства. Таким образом, некоторое противопоставление корпускулярных и волновых свойств, характерное для электродинамической картины мира, разрешилось в дуализме дискретности и непрерывности как частиц вещества, так и поля.

Идеи де Бройля позволили объяснить многие экспериментальные факты, накопившиеся к этому времени, но и породили новые трудности. Из-за двуликости частицы оказалось невозможно одновременно точно указать ее скорость и положение. Так был сформулирован принцип неопределенности, проявление которого затем были обнаружены далеко за пределами физики.

Соотношение неопределенностей – это концептуально новый подход к определению взаимосвязанных параметров исследуемого микрообъекта.

В физике существует так называемый принцип неопределенности Гейзенберга, согласно которому при ядерном распаде невозможно определить с одинаковой вероятностью координату и импульс. То есть, если что-то известно с большой вероятностью, то другое - с гораздо меньшей. Знаешь - чего, не знаешь - сколько. Знаешь - сколько, не знаешь - чего. Знаешь сколько, чего и где, не знаешь - с кем. Название ни к чему не обязывает, неопределенно все.

Гейзенберг отмечает, что квантово-механические матрицы координаты и импульса не коммутируют друг с другом (не подчиняются перестановочному закону, т.е. АВ ≠ ВА). Это является математическим выражением принципа неопределенностей, сформулированного им в 1927 г.: микрочастица не имеет одновременно точных значений координаты и соответствующей ей проекции импульса, а следовательно, не имеет траектории движения. В частности, электрон в атоме не имеет траектории; вместо непрерывных кривых (стационарные орбиты Бора) есть некоторый дискретный набор чисел (квантовые числа), значения которых зависят от номера начального и конечного состояний электрона.

Это положение сыграло важную роль в становлении квантовой механики. Согласно ему получение экспериментальных данных об одних физических величинах, описывающих микрообъект (например, электрон, протон, атом), неизбежно связано с изменением таких данных о величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координата и импульс частицы. Этот принцип. содержится в принципе неопределенностей, математическим выражением которого являются соотношения неопределённостей.

Принцип суперпозиции – принцип, определяющий значение некоторой физической величины, формируемой двумя или более физическими величинами той же природы: результирующая физическая величина равна сумме составляющих физических величин

В классической физике: принцип суперпозиции – это допущение, согласно которому результирующий эффект от нескольких независимых воздействий представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности. Справедлив для систем или полей, описываемых линейными уравнениями; важен в механике, теории колебаний и волн, теории физ. полей.

В квантовой механике принцип суперпозиции относится к волновым функциям: если физическая система может находиться в состояниях, описываемых двумя (или несколькими) волновыми функциями, то она может также находиться в состоянии, описываемом любой линейной комбинацией этих функций (принцип суперпозиции состояний).

 

 


Тема 4.3. Принцип возрастания энтропии

O Основные понятия

Формы энергии: тепловая, химическая, механическая, электрическая

Первый закон термодинамики — закон сохранения энергии при ее превращениях

Первый закон термодинамики как утверждение о невозможности вечного двигателя первого рода

Изолированные и открытые системы

Второй закон термодинамики как принцип возрастания энтропии в изолированных системах

Изменение энтропии тел при теплообмене между ними

Второй закон термодинамики как принцип направленности теплообмена (от горячего к холодному)

Второй закон термодинамики как утверждение о невозможности вечного двигателя второго рода

Энтропия как мера молекулярного беспорядка

Энтропия как мера информации о системе

Второй закон термодинамики как принцип нарастания беспорядка и разрушения структур

Закономерность эволюции на фоне всеобщего роста энтропии

Энтропия открытой системы: производство энтропии в системе, входящий и выходящий потоки энтропии

Термодинамика жизни: добывание упорядоченности из окружающей среды

& Краткое содержание

Основные понятия

Наиболее общей и универсальной количественной мерой физических и химических, а также некоторых биологических форм движения материи является энергия.

Энергия

- это физическая величина, являющаяся общей количественной мерой движения и взаимодействия всех видов материи, всех ее структурных уровней;

- это способность тел совершать изменения во внешнем мире.

Изучением энергии, превращением энергии из одной формы в другие занимается термодинамика. Слово термодинамика происходит от греческого слова «термос» (тепло) и «динамос» (сила, мощь).

Законы термодинамики относятся к числу наиболее общих законов природы, которым подчиняются как живые, так и неживые тела. Этим законам подчиняются любые превращения энергии.

Исследованием энергии в макроскопических системах(т.е. рассмотрением общих свойств всей системы) занимается классическая (равновесная) термодинамика.

Классическая термодинамика (XIX в.) занималась изучением тепловых явлений без учета молекулярного строения тел.

Предмет исследований классической термодинамики – закрытые системы, т.е. системы, которые не обмениваются энергией, веществом и информацией с окружающей средой.

Неравновесная термодинамика изучает процессы в открытых системах, находящихся далеко от равновесного состояния.

Открытые системы – термодинамические системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне и стока вовне вещества, энергии и информации (т.е. обмениваются с окружающей средой веществом (а также энергией и импульсом)).

К наиболее важному типу открытых систем относятся химические системы, в которых непрерывно протекают химические реакции, происходит поступление реагирующих веществ извне, а продукты реакций отводятся. Биологические системы, живые организмы можно также рассматривать как открытые химические системы.

2. Законы (начала) классической термодинамики

Первое начало термодинамики

закон сохранения и превращения энергии – количество теплоты, сообщаемое системе, идет на изменение ее внутренней энергии и на совершение системой работы против внешних сил (современная формулировка). – «энергия не создается и не уничтожается, но может превращаться из одной формы в другую»

Согласно этому закону, при любых химических, физических взаимодействиях, при любом перемещении вещества, при любом изменении температуры энергия не возникает и не исчезает, только превращается из одного вида в другой.

Закон подразумевает, что в результате превращений энергии никогда нельзя получить ее больше, чем затрачено: выход энергии всегда равен ее затратам, нельзя из ничего получить нечто, за все нужно платить.

Закон сохранения энергии – один из основных законов природы. Он справедлив для любых явлений и процессов, протекающих в природе или создаваемых человеком.

Он связан с абсолютностью, несотворимостью и неуничтожимостью движения материи; охватывает все возможные формы движения, любые виды взаимодействий и в изолированных системах выполняется с абсолютной точностью. Этот закон устанавливает общее свойство качественно различных форм движения материи переходить друг в друга в строго определенных количествах. Закон выражает связь между различными видами энергии в процессах, где происходит превращение форм движения материи. Он также может выражать неизменность величины определенного вида энергии, если не происходит изменения форм движения материи.

Значение этого закона состоит в том, что он фактически ликвидирует границы между отдельными науками и областями естественных наук и увязывает в единое целое все природные явления.

Но можно подумать, что энергия всегда будет существовать в достаточном количестве. Однако если вы будете ездить на автомобиле, наполнив бак бензином, или у вас будет постепенно садиться батарейка карманного фонарика, вы будете что-то терять. Что? Качество энергии.

Множество опытов показывают, что в процессе любого превращения энергии из одного вида в другой всегда происходит снижение качества энергии, или уменьшается количество полезной энергии.

Под качеством энергии понимают меру ее эффективности, или способность совершать полезную работу.

Второе начало термодинамики

Все, что мы наблюдаем в природе, сформулировано во 2-м законе термодинамики. Возможно несколько формулировок:

1)

при любом переходе из одного вида в другой некоторое количество первичной энергии всегда теряет свое качество и, следовательно, способность выполнять полезную работу

2)

невозможна самопроизвольная передача теплоты от более холодного к более горячему телу

3)

2-ой закон термодинамики подразумевает также, что мы практически никогда не можем восстановить или повторно использовать высококачественную энергию для выполнения полезной работы. Будучи однажды использованной, энергия, которая содержалась в хлебе, бензине, каменном угле, куске урана, выполняет работу и рассеивается в окружающей среде в виде низкокачественного тепла.

Результаты многочисленных наблюдений показывают, что в отличие от механических процессов, тепловые процессы необратимы.

Всякая замкнутая система с течением времени стремится перейти в состояние термодинамического равновесия. Достигнув состояния термодинамического равновесия, замкнутая физическая система остается в нем сколь угодно долго.

Таким образом, все термодинамические процессы в замкнутых физических системах являются необратимыми и носят направленный характер.

Австрийский физик Людвиг Эдуард Больцман (1844—1906) утверждал, что, когда произвольная система тел будет предоставлена сама себе и не будет подвержена действию других тел, всегда может быть указано направление, в котором будет происходить каждое изменение состояния.

Направление протекания процессов характеризуется функцией состояния — энтропией, которая неотрицательна, максимальна в состоянии термодинамического равновесия, и отсюда следует вывод:

4)

всякая замкнутая система тел стремится к определенному состоянию (состоянию термодинамического равновесия), для которого энтропия будет максимальной

Направление и течение всех реальных процессов задается изменением S. Все реальные процессы необратимы (в изолированной системе) и направлены в сторону увеличения S.

Л. Больцман дал статистическую интерпретацию второго начала термодинамики и вскрыл его вероятностный характер.

Состояние термодинамического равновесия обладает наибольшей вероятностью осуществления. При переходе системы из неравновесного состояния в состояние равновесия вероятность состояния возрастает, система переходит от состояния порядка к состоянию хаоса, беспорядка.

Термин «энтропия» (S) употребляется для определения степени неупорядоченности состояния вещества.

Энтропия (от гр. trope - обращение, изменение) – это мера хаотичности, беспорядка или неупорядоченности в системе.

Например, частицы газа находятся в хаотичном движении, они более неупорядочены, чем частицы твердых тел. Следовательно, энтропия газов больше, чем энтропия твердых тел.

Вещество высокого качества, хорошо упорядоченное или сконцентрированное или высококачественная энергия – обладает низкой энтропией.

Вещество низкого качества, рассеянное или энергия, рассеивающаяся в окружающую среду, характеризуется высокой энтропией.

Таким образом, энергия низкого качества, обладающая высокой энтропией, рассеяна настолько, что не способна выполнять полезную работу, то есть высококачественная энергия (низкая энтропия) в отличие от вещества не может быть восстановлена или использована повторно.

Рассмотрим в действии 2-ой закон термодинамики.

Пример 1-й - когда движется автомобиль, в механическую энергию, приводящую его в движение, и электрическую энергию всех его систем превращается всего лишь около 10% получаемой при сгорании бензина высококачественной химической энергии. Остальные 90% в виде бесполезного тепла рассеиваются в окружающей среде и, в конечном счете, теряются в космическом пространстве.

Пример 2-й - когда электрическая энергия проходит через проволоку накаливания, 5% этой энергии превращается в полезное световое излучение, а 95% в виде тепла рассеивается в окружающей среде.

Пример 3-й - когда вы едите растительную пищу, например яблоко, его высококачественная химическая энергия в Вашем организме превращается в высококачественную электрическую и механическую энергии, используемые для движения и обеспечения других процессов жизнедеятельности, а также в низкокачественное тепло.

Таким образом, общее количество концентрированной высококачественной энергии, которую мы можем получать из всех источников, постоянно сокращается, превращаясь в низкокачественную энергию.

Все виды энергии (потенциальная, кинетическая, тепловая, химическая, электрическая, магнитная) непосредственно служат источниками работы, производимой в природе и технике. Работа представляет собой превращение одного вида энергии в другой. Энтропия может служить мерой обесценения энергии.

Можно считать ценностью энергии возможность ее превращения в полезную работу. Чем больше выделяется теплоты, то есть чем больше S, тем меньше полезная работа, то есть тем меньше ценность энергии.

Третье начало термодинамики (закон Нернста):

при стремлении температуры к абсолютному нулю энтропия любой системы стремится к конечному пределу, не зависящему от давления, плотности или фазы. Т.е. ни в каком процессе, связанном с изменением энтропии, достижение абсолютного нуля невозможно, к нему можно лишь бесконечно приближаться.



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 1109; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.211.116 (0.011 с.)