Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Движение генетики от антидарвинизма к союзу с дарвинизмом. Роль генетики популяцийСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Генетика вначале была использована для борьбы против дарвинизма. Устойчивость генов трактовалась как их неизменность. Мутационная изменчивость отождествлялась непосредственно с видообразованием и, как казалось, как будто отменяла естественный отбор в качестве главного фактора эволюции. Но уже к концу 20-х годов XX в. становилось все яснее, что генетика раскрывает конкретный механизм изменчивости, соотношение свойств организма и характера внешних воздействий в возникновении индивидуальных изменений. Основатель мутационной теории Гуго де Фриз считал, что каждая мутация ведет к возникновению нового вида и сводил эволюцию к простому накоплению мутаций. На самом деле мутации лишь поддерживают наследственную неоднородность популяций и других эволюционных групп. Но это необходимое, но еще недостаточное условие эволюционного процесса. Необходимы также необратимые изменения среды — как абиотические по своему происхождению (изменения климата, горообразование и т.п.), так и биогенные, порожденные самой жизнью, к которым присоединились антропогенные, обусловленные человеческой деятельностью. Генетика на молекулярном уровне представляет прочный фундамент для современного дарвинизма. С помощью своих понятий она раскрыла механизм микроэволюции. Большое значение для понимания конкретного хода видообразования и действия естественного отбора имеют исследования в области, пограничной между эволюционным учением, экологией и генетикой — генетики популяций (совокупности организмов данного вида, проживающих в одной местности и находящихся в постоянном контакте, обеспечивающем самовоспроизведение и трансформацию данной совокупности). Именно в генетике популяций обнаруживается необходимость связи микроэволюции с макроэволюцией. Одной микроэволюции, одной генетики недостаточно. Она не дает ответа на вопрос, что же определяет направление эволюционных преобразований. Это определяет внешняя среда, что и раскрывает непосредственно сама эволюционная теория. Важную роль в объединении генетики и эволюционной теории, в разработке генетики популяций, сыграли С.С. Четвериков, Н.П. Дубинин и другие русские ученые. В 40—50-е годы XX в. И.И. Шмальгаузен, опираясь на достижения генетики, конкретизировал учение о естественном отборе, выделив две его формы: стабилизирующий отбор и ведущий отбор. Выясняя соотношение эволюционного учения и современной генетики, необходимо четко уяснить, что речь идет о двух различных уровнях организации живой природы: видового (надиндивидуального) и молекулярно-генетического (субиндивидуального). В сущности эта проблема сводится к выяснению действия механизмов естественного отбора на видовом и молекулярно-генетическом уровнях. Генетическая (генная) и клеточная инженерия В 70-е годы XX века создана техника выделения гена из ДНК, а также методика размножения нужного гена. В результате этого возникла генная инженерия. Внедрение в живой организм чужеродной генетической информации и приемы, заставляющие организм эту информацию реализовывать, составляют одно из самых перспективных направлений в развитии биотехнологии. Методами генетической инженерии удалось получить интерферон и инсулин. Объектом биотехнологии выступает сегодня не только отдельный ген, но и клетка в целом. Клеточная инженерия открывает широкие возможности практического использования биомассы культивируемых клеток и создания на их основе промышленных технологий, например, для быстрого клонального микроразмножения и оздоровления растений. Применение методов клеточной инженерии позволяет существенно интенсифицировать процесс создания новых форм организмов. Метод гибридизации соматических клеток — новый метод, дающий возможность получать межвидовые гибриды, т.е. преодолевать естественный барьер межвидовой нескрещиваемости, чего нельзя было достичь традиционными методами селекции. Для этого в искусственно созданных условиях выделяют и сливают протопласты — клетки, лишенные стенок, — обоих родительских растений и получают гибридные клетки, которые могут затем регенерировать целое гибридное растение с признаками обоих родителей. Это позволяет получать совершенно новые организмы, не существовавшие в природе. Но при этом возникает опасность, что искусственно созданные организмы могут вызвать непредсказуемые и необратимые последствия для всего живого на Земле, в том числе, и для человека. Генная и клеточная инженерия обратили внимание человечества на необходимость общественного контроля за всем, что происходит в науке.
Литература к главе 20 Вавилов H.И. Жизнь коротка, надо спешить. - М., 1990. Камшилов М.М. Эволюция биосферы. - М., 1974. - Гл. 4—7. Общая биология. - М., 1980. - С. 111-125, 148-159. Шварц С.С. Экологические закономерности эволюции. — М., 1980. Яблоков A.B. Популяционная биология. - М., 1987. ГЛАВА 21 ЭКОЛОГИЯ КАК НАУКА. СТРУКТУРА И ЭВОЛЮЦИЯ БИОСФЕРЫ В ЦЕЛОМ Дарвинизм и экология. Структура биосферы и закономерности эволюционного процесса. Современная синтетическая теория эволюции. Дарвинизм и экология В середине 20-х годов нашего века наряду с синтезом дарвинизма с генетикой началось формирование другого направления - экологического, базирующегося на принципах системности, организованности и устойчивости живой природы и отдельных организмов. Экология — наука, изучающая соотношение организмов с условиями среды и формы их приспособления к условиям существования. К ее возникновению привел дарвинизм, а затем сама экология способствовала его развитию, давая конкретный материал для изучения борьбы за существование и естественного отбора. Название новой науки (экология) дал Э. Геккель в 1879 г. Экология раскрывает структуру и закономерности эволюции биосферы в целом, изучая взаимосвязи по цепочке: особь → популяция → вид →биоценоз → биогеоценоз → биосфера. Особь в этой системе играет роль лаборатории новообразований, популяция представляет первичную ячейку деятельности естественного отбора, элементарную эволюционную единицу, биогеоценоз содержит все основные компоненты биотического круговорота; биосфера — сама жизнь во всем ее многообразии и целостном эволюционном процессе. Новое появляется в особи, а его конечная судьба и значение определяются биосферой. Экологию разделяют на аутэкологию и синэкологию. Первая изучает взаимоотношения между видами и средой, вторая - между самими видами в составе биоценоза. Аутэкология изучает формы адаптации как результат естественного отбора, а синэкология раскрывает конкретные формы борьбы за существование. Конечно, обе ветви экологии взаимосвязаны и их разделение относительно. Особое значение для экологии имеет понятие популяции (его значение раскрыто в предыдущей главе). Иногда экологию прямо определяют как биологическую дисциплину, исследующую «закономерности жизни популяций того или иного вида в конкретной среде их обитания». Под биоценозом понимается совокупность популяций разных видов, обитающих совместно на одной территории и поэтому находящихся в контакте друг с другом. Между ними могут быть отношения хищника и жертвы, нейтральные, взаимного содействия, взаимопомощи (мутуализма), паразитизма и т.п. В созданном В.Н. Сукачевым и его школой учении о биогеоценозах дается анализ всего многообразия отношений между организмами разных видов, слагающими биоценоз (растениями, животными, микроорганизмами), почвой и всеми абиотическими факторами среды. Мощным фактором видообразования является географическое расселение организмов. Биогеографические исследования установили ряд закономерностей эколого-географической изменчивости (например, установлено, что выступающие части тела — уши, хвост и др. — оказываются более короткими в холодных областях и более длинными в жарких). До В.И. Вернадского под биосферой понималась совокупность всех живых организмов на Земле. В.И. Вернадский обратил внимание на неразрывность живых и неживых систем и утвердил трактовку биосферы как единой системы живого и неживого, активно влияющих друг на друга. Жизнь, по Вернадскому, не только зависит от среды, но и сама производит колоссальную геохимическую работу. Биосфера - это сфера жизни в земной коре, воде и воздухе, простирающаяся примерно от 10 км вглубь Земли до 30 км над Землей.
|
||||
Последнее изменение этой страницы: 2016-07-15; просмотров: 443; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.244.244 (0.011 с.) |