ТОП 10:

Поражающие факторы источников ЧС природного и техногенного характера



Источники чрезвычайных ситуаций природного и техно­генного характера имеют свои поражающие факторы. Пора­жающий фактор — это физическое, химическое или биологи-


9.2. Поражающие факторы источников ЧС природного и техногенного хар-ра 183

ческое действие, которое определяется или выражается соот­ветствующими параметрами.

Поражающее действие источника ЧС заключается в нега­тивном влиянии одного поражающего фактора или их сово­купности на жизнь и здоровье людей, сельскохозяйственных животных и растений, объекты экономики и окружающую среду.

Основными поражающими факторами источников ЧС явля­ются: воздушная ударная волна, световое (тепловое) излучение, ионизирующее излучение и токсическое воздействие.

Воздушная ударная волна возникает при взрывах. Взрыв — это весьма быстрое изменение химического (или физического) состояния вещества, сопровождающееся выделением в милли­онные доли секунды большого количества тепла и образовани­ем большого количества газов (создающих ударную волну), которые своим давлением могут вызвать разрушения. Газооб­разные продукты взрыва, соприкасаясь с воздухом, нередко воспламеняются, что может вызвать пожар.

Воздушная ударная волна — это область резко сжатого воз­духа, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью.

Основными параметрами воздушной ударной волны явля­ются:

— избыточное давление во фронте ударной волны;

— давление скоростного напора во фронте ударной волны.

Избыточное давление во фронте ударной волны — это разность между максимальным давлением во фронте и нор­мальным атмосферным давлением перед фронтом. За единицу избыточного давления в системе СИ принят Паскаль (Па), внесистемная единица - килограмм-сила на квадратный сан­тиметр (кгс/см2). При встрече с преградой ударная волна об­разует давление отражения, которое, взаимодействуя с избы­точным давлением, может увеличить его в 2 и более раза.

Роль избыточного давления и скоростного напора в по­вреждении и разрушении зависит от размеров, конструкции объекта и степени его связи с земной поверхностью. Так, разрушение дымовых труб, опор линий электропередач, мос­товых ферм, столбов или им подобных объектов происходит под действием скоростного напора.

 

 

Гл. 9. Чрезвычайные ситуации мирного и военного времени

Поражения, наносимые людям ударной волной, принято разделять на:

легкие — 20—40 кПа (0,2—0,4 кгс/см2) — скоропроходя-
щие нарушения функций организма (звон в ушах, голо­
вокружение, головная боль, возможные вывихи и ушибы);

— средние — 40—60 кПа (0,4—0,6 кгс/см2) — вывихи конеч­
ностей, контузия головного мозга, повреждение органов
слуха, кровотечение из носа и ушей;

— тяжелые — 60—100 кПа (0,6—1 кгс/см2) — сильные конту­
зии всего организма, потеря сознания, переломы конеч­
ностей, возможны повреждения внутренних органов;

— крайне тяжелые — более 100 кПа (1 кгс/см2) — переломы
конечностей, внутренние кровотечения, сотрясение мозга,
потеря сознания, возможны смертельные исходы [6].

Оценка разрушений элементов объекта, вызванных воз­душной ударной волной, проводится по степени их разрушения. Для большинства элементов объекта экономики, как правило, рассматриваются три степени разрушений:

1) слабое — объект не выходит из строя, необходим незначи­
тельный ремонт (при действии нагрузок 8-10 кПа);

2) среднее — разрушены главным образом второстепенные
элементы объекта, основные элементы могут быть восста­
новлены путем проведения среднего и капитального ре­
монта (10-20 кПа);

3) сильное — разрушены основные элементы объекта и
объект не может быть восстановлен (20—40 кПа).

4) Полное разрушение жилых и промышленных зданий (40—
60 кПа).

Объем разрушений в городе и объекта экономики зависит от характера строений, их этажности и плотности застройки.

Величины давления фронта ударной волны, при которых наносятся слабое, среднее и сильное разрушения элементам объекта, приводятся в таблицах или определяются по формулам.

Остекление зданий разрушается при давлении во фронте ударной волны равном 2—7 кПа [6].

Световое (тепловое) излучение возникает при сильных по­жарах, которые нередко сопровождаются взрывами. Пожар — это горение, в результате которого уничтожаются или повреж­даются . материальные ценности, создается опасность для жизни и здоровья людей.


9.2. Поражающие факторы источников ЧС природного и техногенного хар-ра 185

В обычных условиях горение представляет процесс окис­ления горючего вещества кислородом воздуха, сопровождаю­щийся выделением газа, тепла и света. В то же время некото­рые вещества, например сжатый ацетилен, хлористый азот, взрывчатые вещества, могут гореть и детонировать без кисло­рода, создавая при этом высокие температуры и пламя. Горе­ние может проходить в трех формах — собственно горение, взрыв, детонация, что определяется скоростью горения. При собственно горении скорость распространения пламени не превышает десятков метров в секунду, при взрыве — сотни метров в секунду, а при детонации — тысячи метров в секунду [21].

Горение происходит с наиболее малой скоростью, если в воздухе содержится 14—15% кислорода. По мере увеличения концентрации кислорода процесс горения убыстряется. Обычно различают полное и неполное горение. Полное горение дости­гается при достаточном количестве кислорода, а неполное — при его нехватке. При неполном горении, как правило, обра­зуются едкие, ядовитые и взрывоопасные смеси.

Расчетами установлено, что для сгорания 1 кг древесины необходимо 5,04 м3 воздуха, а для 1 кг нефтепродукта — 11,6. Воздуха во время пожара расходуется в два — три раза больше. Необходимыми компонентами возникновения и развития процесса горения являются горючее, окислитель и источник возгорания. Горение прекращается при отсутствии одного из них. Так, при тушении горючих жидкостей пенами поступле­ние паров горючего в зону горения прекращается и пожар ло­кализуется.

Процесс окисления некоторых веществ сопровождается выделением тепла и при определенных условиях может автоге-нерироваться. Такой процесс самоускорения реакции окисле­ния с переходом ее в фазу горения называется самовоспламе­нением. Температура самовоспламенения зависит от состава вещества, его агрегатного состояния, давления и т.д. Газы и жидкости в основном воспламеняются в диапазоне температур от 400 до 700° С, а твердые тела (дерево, уголь, торф и др.) — 250—450° С. При увеличении содержания кислорода в вещест­вах и уменьшении содержания углерода температура самовос­пламенения снижается [21].

Для горения и воспламенения важное значение имеет кон­центрация газов и паров в воздухе. Характеристикой взрывоо-

 

 


 
 

Гл. 9. Чрезвычайные ситуации мирного и военного времени

пасности горючих веществ являются нижний и верхний преде­лы взрываемости. Нижний предел взрыва характеризуется на­именьшей концентрацией газов и паров воздуха, при котором возможен взрыв, а верхний — наибольшей их концентрацией, при которой еще возможен взрыв.

Воспламенение горючего вещества вызывает ударная волна, создаваемая при резком сжатии горючей смеси за счет увеличения давления. Этот фактор учитывается при оценке взрывоопасности горючих веществ.

Ударная волна, проходя во взрывоопасной среде, вызыва­ет внезапное скачкообразное повышение параметров состоя­ния газов — давления, температуры, плотности, что является причиной возникновения детонационного горения. Темпера­тура газов при этом может повышаться до температур, приво­дящих к самовоспламенению, а во взрывоопасной среде вы­зывает химические реакции. Сочетание явления ударной волны с наличием зоны химической реакции порождает дето­национную волну, в итоге чего происходит детонация. При де­тонации скорость распространения пламени достигает 1000— 4000 м/с, что превышает скорость распространения звука.

Все горючие жидкости пожароопасны. Они горят в возду­хе при определенных условиях, создаваемых концентрацией их паров. Горючие жидкости постоянно испаряются, образуя над поверхностью насыщенные взрывоопасные пары.

Горючие жидкости по температуре вспышки подразделя­ются на два класса. Жидкости, вспыхивающие при температуре менее 45°С, относятся к первому классу (бензин, керосин, эфир и т.д.), а имеющие температуру вспышки выше 45°С — ко второму (масла, мазуты и др.). Первый класс жидкостей называется легковоспламеняющимися (ЛВЖ), второй — горючи­ми (ГЖ). Пожароопасны также пыли и пылевоздушные смеси горючих веществ. В воздухе они могут образовывать взрывоо­пасные смеси.

Взрывоопасными являются пыль сахара, крахмала, на­фталина — при концентрации в воздухе до 15 г/м3; торф, кра­сители и т.п. — при концентрации от 15 до 65 г/м3.

Горение нефти и нефтепродуктов может происходить в резервуарах, производственной аппаратуре и при их разливе на открытых площадках. При пожаре нефтепродуктов в резе­рвуарах могут происходить взрывы, вскипание горючих ве­ществ и их выброс, в результате которых имеют место разливы


9.2. Поражающие факторы источников ЧС природного и техногенного хар-ра 187

горящей жидкости. При вскипании резко возрастает темпера­тура порядка до 1500° С и высота пламени. Для таких пожаров характерно бурное горение вспененной массы горючего вещества. Пламя при непосредственном воздействии на людей вызы­вает ожоги, которые по тяжести поражения организма разде­ляют на четыре степени:

— ожоги первой степени (при 2—4 кал/см2) выражаются в
болезненности, покраснении и припухлости кожи;

— ожоги второй степени (при 4—10 кал/см2) характеризуют­
ся образованием пузырей;

— ожоги третьей степени (при 10—15 кал/см2) — омертвлени­
ем кожи с частичным поражением росткового слоя;

— ожоги четвертой степени (при более 15 кал/см2) — обугли­
ванием кожи и подкожной клетчатки.

Пораженные с ожогами первой и второй степени обычно выздоравливают, а с третьей и четвертой, при значительной части поражения кожного покрова, могут погибнуть[6].

К основным поражающим факторам радиационной ава­рии относятся радиационное воздействие и радиационное за­грязнение.

Радиационное воздействие на человека состоит в иониза­ции тканей его тела ионизирующими излучениями и возник­новении лучевой болезни различных степеней. При этом в первую очередь поражаются кроветворные органы, в результа­те чего наступает кислородный голод тканей, резко снижается иммунная защищенность организма, ухудшается свертываемость крови. При радиоактивном загрязнении природной среды практически трудно создать условия, предохраняющие людей от облучения. Поэтому при действиях на местности, загряз­ненной радиоактивными веществами, устанавливаются допус­тимые дозы на тот или иной промежуток времени, которые, как правило, не должны вызывать у людей радиационного поражения.

Главный поражающий фактор при авариях на ХОО — хи­мическое заражение приземного слоя атмосферы и местности, приводящее к токсическому поражению людей и животных, находящихся в зоне действия аварийно химически опасных веществ.

 

 

188 . Гл. 9. Чрезвычайные ситуации мирного и военного времени

9.3. Виды оружия массового поражения и последствия его применения

Оружие массового поражения (ОМП) — оружие большой поражающей способности, предназначенное для нанесения массовых потерь и разрушений. Поражающие факторы ору­жия массового поражения, как правило, в течение определен­ного времени после его применения могут наносить противни­ку урон и оказывать сильное морально-психологическое воз­действие. Основные принципы его применения — внезап­ность и массирование на решающих направлениях. Объектами поражения ОМП являются: люди; продукты их труда; природ­ная среда обитания (почвенный покров, растения, живот­ные, климатические и геофизические элементы). К сущест­вующим видам ОМП относятся ядерное, химическое, биоло­гическое (бактериологическое) оружие.

/. Ядерным оружием называется такое оружие, поражающее действие которого обусловлено энергией, выделяющейся при ядерных реакциях деления или синтеза. Это оружие включает различные ядерные боеприпасы, средства управления ими и доставки к цели.

Ядерное оружие предназначено для массового поражения людей, уничтожения или разрушения административных, промышленных центров, различных объектов, сооружений, техники.

Поражающее действие ядерного взрыва зависит от мощ­ности боеприпаса, вида взрыва, типа ядерного заряда. Мощ­ность ядерного боеприпаса характеризуется тротиловым экви­валентом, т.е. массой тринитротолуола (тротила), энергия взрыва которого эквивалентна энергии взрыва данного ядер­ного боеприпаса, и измеряется в тоннах, тысячах, миллионах тонн. По мощности ядерные боеприпасы подразделяются на сверхмалые (менее 1тыс. т), малые (1—10 тыс. т), средние (10— 100 тыс. т), крупные (100 тыс.т — 1 млн т) и сверхкрупные (более 1 млн т).

Ядерные взрывы могут осуществляться на поверхности земли (воды), под землей (водой) или в воздухе на различной высоте. В связи с этим принято различать следующие виды ядерных взрывов: наземный, подземный, подводный, воз­душный и высотный. Наиболее характерными видами ядер­ных взрывов являются наземный и воздушный.


 

9.3. Виды оружия массового поражения и последствия его применения

Наземный ядерный взрыв — взрыв, произведенный на по­верхности земли или на такой высоте, когда его светящаяся область касается поверхности земли и имеет форму полусферы или усеченной сферы. При наземном взрыве в грунте образу­ется воронка, диаметр которой зависит от высоты, мощности взрыва и вида грунта.

Наземные взрывы применяют для разрушения сооружений большой прочности, а также в тех случаях, когда желательно сильное радиоактивное заражение местности.

Воздушным называется ядерный взрыв, при котором светя­щаяся область не касается поверхности земли и имеет форму сферы. Различают низкий и высокий воздушные взрывы. При низком воздушном взрыве за счет воздействия отраженной от поверхности земли ударной волны светящаяся область может несколько деформироваться снизу.

Воздушные ядерные взрывы применяются для разрушения малопрочных сооружений, поражения людей и техники на больших площадях или когда сильное радиоактивное зараже­ние местности недопустимо.

Поражающие факторы ядерного взрыва и их воздействие на людей, здания, сооружения.Огромное количество энергии, высвобождающейся при взрыве ядерного боеприпаса, расхо­дуется на образование воздушной ударной волны, светового излучения, проникающей радиации, радиоактивного зараже­ния местности и электромагнитного импульса, называемых поражающими факторами ядерного взрыва.

Ударная волна ядерного взрыва — один из основных пора­жающих факторов. В зависимости от того, в какой среде воз­никает и распространяется ударная волна: в воздухе, воде или грунте, — ее называют соответственно воздушной ударной волной, ударной волной в воде и сейсмовзрывной волной.

Обладая большим запасом энергии, ударная волна ядер­ного взрыва способна наносить поражение людям, разрушать различные сооружения, боевую технику и другие объекты на значительных расстояниях от места взрыва. На распростране­ние ударной волны и ее разрушающее и поражающее действие существенное влияние могут оказать рельеф местности и лес­ные массивы в районе взрыва, а также метеоусловия.

Зона поражения ударной волной при ядерном взрыве имеет значительно большие размеры, чем при взрыве обычно­го боеприпаса.

 

 


Гл. 9. Чрезвычайные ситуации мирного и военного времени

9.3. Виды оружия массового поражения и последствия его применения191


 


Характер и тяжесть поражения людей зависят от величины параметров ударной волны, положения человека в момент взрыва и степени его защищенности. При прочих равных ус­ловиях наиболее тяжелые поражения получают люди, находя­щиеся в момент прихода ударной волны вне укрытий в поло­жении стоя. В этом случае площадь воздействия скоростного напора воздуха будет примерно в 6 раз больше, чем в положе­нии человека лежа.

Заглубленные сооружения (убежища, укрытия, подзем­ные сети коммунального хозяйства) разрушаются в меньшей степени, чем сооружения, возвышающиеся над поверхностью земли. Из наземных зданий и сооружений наиболее устойчи­выми к воздействию ударной волны являются здания с метал­лическими каркасами и сейсмоустойчивые сооружения.

Особенностью действия ударной волны является ее спо­собность затекать внутрь негерметичных укрытий через возду-хозаборные трубы, отдушины, наносить там разрушения и поражать людей. Во избежание поражения людей затекающей волной воздухозаборные каналы убежищ снабжаются волнога-сительными устройствами.

Воздушная ударная волна вызывает также разрушения лес­ных массивов. Так, в зоне с избыточным давлением более 50 кПа растительность уничтожается полностью и местность приобретает такой вид, будто бы на ней никогда не было ника­ких кустов и деревьев. Здесь нет ни завалов, ни пожаров. В зоне с давлением 50—30 кПа образуются сплошные завалы и разрушается до 60% деревьев. В зоне с давлением 30—10 кПа наблюдаются частичные завалы и разрушается до 30% древес­ной растительности.

Надежной защитой от ударной волны являются убежища. При их отсутствии используются противорадиационные укры­тия (ПРУ), подземные выработки, рельеф местности.

Под световым излучением ядерного взрыва понимается электромагнитное излучение, включающее в себя ультрафио­летовую, видимую и инфракрасную области спектра. Источ­ником светового излучения является светящаяся область взрыва. Время действия светового излучения и размеры светящей­ся области зависят от мощности ядерного взрыва. С ее увели­чением они возрастают. По длительности свечения можно ори­ентировочно судить о мощности ядерного взрыва. Так, время действия светового излучения наземных и воздушных взрывов


мощностью 1 тыс. т составляет 1 с, 10 тыс. т —2,2 с, 100 тыс. т — 4,6 с, 1млнт— 10 с [9].

Световое излучение ядерного взрыва поражает людей, воздействует на здания, сооружения, технику и леса, вызывая пожары. На открытой местности световое излучение обладает большим радиусом действия по сравнению с ударной волной и проникающей радиацией.

Основным параметром, определяющим поражающее дей­ствие светового излучения, является световой импульс. Све­товым импульсом называется количество прямой световой энергии, падающей на 1 м2 поверхности, перпендикулярной направлению распространения светового излучения, за все время свечения. Величина светового импульса (СИ) зависит от вида взрыва и состояния атмосферы и в системе СИ измеря­ется в джоулях на 1 м2 (Дж /м2); внесистемная единица — ка­лория на 1 см2 (кал/см2); 1 кал/см2 = 4,2 х 102 Дж/м2.

Световое излучение, воздействуя на людей, вызывает ожоги открытых и защищенных одеждой участков тела, глаз, а также временное ослепление. Тяжесть поражения людей све­товым излучением зависит не только от степени ожога, но и от его места и площади обожженных участков кожи. Люди выхо­дят из строя, становятся нетрудоспособными при ожогах вто­рой и третьей степени открытых участков тела (лицо, шея, руки) или под одеждой при ожогах второй степени на площади не менее 3% поверхности тела (около 500 см2).

Ожоги глазного дна возможны только при непосредствен­ном взгляде на взрыв. Ожоги век и роговицы глаза возникают при тех же величинах импульсов, что и ожоги открытых участ­ков кожи.

Временное ослепление как обратимое нарушение зрения наступает при внезапном изменении яркости поля зрения, обычно ночью и в сумерки. Ночью временное ослепление носит массовый характер и может продолжаться от нескольких се­кунд до нескольких десятков минут.

Поражающее действие светового излучения в лесу значи­тельно снижается, что приводит к уменьшению радиусов по­ражения людей в 1,5—2 раза по сравнению с открытой мест­ностью. Однако необходимо помнить, что световое излучение при воздействии на некоторые материалы вызывает их воспла­менение и приводит к возникновению пожаров. В населен­ных пунктах они возникают при световых импульсах от 6 до 16

 


Гл. 9. Чрезвычайные ситуации мирного и военного времени

9.3. Виды оружия массового поражения и последствия его применения193


 


кал/см2. При легкой дымке величина импульса уменьшается в,' 2 раза, при легком тумане — в 10, а при густом — в 20 раз.

Световое излучение в сочетании с ударной волной приво­дит к многочисленным пожарам и взрывам в результате разру­шений в населенных пунктах газовых коммуникаций и по-вреждений в электросетях [21].

Проникающей радиацией ядерного взрыва называют поток у-излучения и нейтронов, эмалирующих из зоны и облака ядер­ного взрыва.

Источниками проникающей радиации являются ядерные реакции, протекающие в боеприпасе в момент взрыва, и ра­диоактивный распад осколков (продуктов) деления в облаке взрыва.

Время действия проникающей радиации на наземные объекты составляет 15—25 с и определяется временем подъема об-лака взрыва на такую высоту, при которой у-нейтронное излу­чение, поглощаясь толщей воздуха, практически не достигает поверхности земли (2—3 км).

Основным параметром, характеризующим поражающее действие проникающей радиации, является доза излучения (экс­позиционная, поглощенная и эквивалентная). Следует иметь в виду, что даже небольшие дозы излучения снижают сопротив­ляемость организма к инфекции, приводят к кислородному голоданию тканей, ухудшению процесса свертывания крови. .

Радиоактивное заражение происходит в результате оседа­ния из облака взрыва радиоактивной пыли, содержащей про­дукты деления ядер урана (плутония) и непрореагировавшее ядерное горючее. В районе взрыва оно образуется также при воздействии на грунт нейтронов, испускаемых из огненного шара (наведенная радиоактивность).

Масштабы и уровни локальных радиоактивных загрязне­ний после ядерных взрывов зависят от многих факторов: типа ядерных боеприпасов, вида взрывов, мощности, топографи­ческих и метеорологических условий.

Как же возникают радиоактивное заражение?

Первоначально радиоактивные вещества, образующиеся при взрыве, как и все другие частицы, попавшие в огненный шар, находятся в газообразном состоянии. Затем, охлажда­ясь, они конденсируются и оседают на капельках тумана и частицах пыли и в таком виде находятся в облаке. Если взрывы производятся непосредственно на поверхности земли или


вблизи нее, то часть радиоактивных веществ может быть вкраплена в оплавленные частицы грунта, вовлеченные в ог­ненный шар.

При движении облака ядерного взрыва радиоактивные частицы под воздействием силы тяжести выпадают из него и оседают на землю в виде шлейфа радиоактивного облака, за­грязняя приземный слой воздуха, окружающую местность и находящиеся на ней объекты. В результате образуется зона радиоактивного заражения, представляющая собой вытяну­тый по направлению ветра загрязненный участок территории сигарообразной формы.

Плотность выпадения на местности радиоактивных частиц и содержащихся в них продуктов ядерного взрыва уменьшается с возрастанием расстояния от центра взрыва. Заражение мест­ности происходит неравномерно. На оси следа оно макси­мально, а от оси к краям следа — уменьшается.

По степени опасности поражения людей радиоактивными излучениями на радиоактивно зараженной местности по следу движения облака обычно условно выделяют четыре зоны:

— А — умеренного заражения; ее площадь составляет 70—80%
площади следа;

— Б — сильного заражения; на долю этой зоны приходится
примерно 10% площади следа;

— В — опасного заражения; эта зона занимает примерно 8—
10% площади следа;

— Г — чрезмерно опасного заражения; зона составляет при­
мерно 2—3% площади следа [4].

Степень радиоактивного заражения непостоянна. Это объясняется тем, что осевшие из облака ядерного взрыва ра­диоактивные вещества постоянно распадаются и превращают­ся в обычные (стабильные) химические элементы, которые не испускают радиоактивных излучений. Вследствие этого со временем происходит уменьшение степени заражения, а сле­довательно, и опасности поражения людей.

Наиболее сильное заражение наблюдается на местности сразу после оседания радиоактивных частиц из облака. Затем оно с каждым часом непрерывно убывает. Уровни радиации на внешних границах указанных зон через 1 час после взрыва соответственно равны 8, 80, 240 и 800 Р/ч, а через 10 часов — 0,5; 5; 15 и 50 Р/ч. Через сутки уровень радиации уменьшится в 45 раз, через двое суток — в 100 раз [7].

7—191

 

 

 

Гл. 9. Чрезвычайные ситуации мирного и военного времени

Надежной защитой от проникающей радиации ядерного взрыва являются защитные сооружения ГО. При прохождении через различные материалы поток у-квантов и нейтронов ос­лабляется. Способность того или иного материала ослаблять проникновение у-излучения или нейтронов принято характе­ризовать слоем половинного ослабления, т.е. толщиной слоя материала, который уменьшает дозу излучения в 2 раза. Так, например, для воды толщина слоя половинного ослабления равна 23 см, брони — 3 см, свинца — 2 см, грунта — 14,4 см, бетона — 10 см, древесины — 33 см.

Жилые и производственные здания также снижают воз­действие радиоактивных излучений. Так, радиоактивные из­лучения людей, укрытых в одноэтажном каменном доме, ос­лабляются примерно в 10 раз, находящихся на 3—5-м этажах — в 20—30 раз, в подвале под одноэтажным каменным домом — в 40 раз, а под трех-, пятиэтажным — в 400 раз. Слоем земли, толщиной в один метр, радиоактивные излучения ос­лабляются более чем в 1000 раз [7].

Проходя через материалы, поток у-квантов и нейтронов вызывает в них различные изменения. Так, при дозах прони­кающей радиации в несколько рад засвечиваются фотомате­риалы, находящиеся в светонепроницаемых упаковках, а при дозах в сотни рад выходит из строя полупроводниковая радио­электронная аппаратура, темнеют стекла оптических приборов.

Проникающая радиация является одним из основных по­ражающих факторов нейтронного боеприпаса, что обусловли­вает необходимость рассмотрения особенностей его поражаю­щего действия.

Нейтронным оружием, которое является разновидностью ядерного, принято называть термоядерные боеприпасы сверх­малой и малой мощности, т.е. имеющие тротиловый эквива­лент до 10 тыс. т. В состав такого боеприпаса входит плуто­ниевый детонатор (обычный атомный заряд) и некоторое ко­личество тяжелых изотопов водорода — дейтерия и трития. При этом цепная реакция деления необходима только для на­грева дейтериево-тритиевой смеси, а основная часть энергии взрыва образуется при реакциях соединения ядер легких эле­ментов и проявляется в виде выходящего наружу мощного нейтронного потока. Таким образом, особенность поражаю­щего действия нейтронного оружия связана с повышенным выходом проникающей радиации, в которой преобладающей компонентой является нейтронное излучение.


9.3. Виды оружия массового поражения и последствия его применения 195

По поражающему действию проникающей радиации на людей взрыв нейтронного боеприпаса в 1 тыс. т эквивалентен взрыву атомного боеприпаса мощностью 10—12 тыс. т.

Одной из особенностей действия мощного потока прони­кающей радиации нейтронных боеприпасов является то, что прохождение нейтронов высоких энергий через материалы конструкций техники и сооружений, а также через грунт в районе взрыва вызывает появление в них наведенной радиоак­тивности. Наведенная радиоактивность в технике в течение многих часов после взрыва (до ее спада) может явиться причи­ной поражения людей, ее обслуживающих.

Защита от проникающей радиации нейтронного боеприпа­са составляет определенные трудности, так как те материалы, которые лучше ослабляют нейтронный поток, хуже защищают от у-излучения и наоборот. Отсюда вывод: для защиты от проникающей радиации нейтронного боеприпаса необходимо комбинировать водородсодержащие вещества с материалами повышенной плотности.

Среди поражающих факторов ядерного взрыва радиоак­тивное заражение занимает особое место, так как его воздей­ствию подвергается не только район, прилегающий к месту взрыва, но и местность, удаленная от него на десятки и даже сотни километров. При этом на больших площадях и на дли­тельное время может создаваться заражение, представляющее опасность для людей и животных.

Местность считается зараженной и требуется применять средства защиты, если уровень радиации, измеренной на высо­те 0,7—1 м от поверхности земли, составляет 0,5рад/ч и более.

Уровень радиации на местности, степень зараженности поверхности различных объектов РВ определяются по показа­ниям дозиметрических приборов.

Радиоактивно зараженная местность может вызвать пора­жение находящихся на ней людей как за счет внешнего у-излу­чения от осколков деления, так и от попадания радиоактив­ных продуктов на кожные покровы и внутрь организма человека.

В результате внешнего у-излучения развивается лучевая болезнь, клиническая картина которой та же, что и при воз­действии на организм у-нейтронного излучения проникающей радиации ядерного взрыва.

Попадание РВ внутрь организма может происходить как ингаляционным путем при нахождении человека на местности

 


Гл. 9. Чрезвычайные ситуации мирного и военного времени

9.3. Виды оружия массового поражения и последствия его применения197


 


в период формирования следа или после его образования, так и при употреблении радиоактивно зараженных пищевых про­дуктов.

В зависимости от количества радиоактивных продуктов взрыва, поступивших внутрь организма, и его индивидуаль­ных особенностей могут развиваться поражения тяжелые, средней тяжести и легкие.

Поражение кожи а- и р-излучением РВ развивается вслед­ствие контактного действия излучения при попадании продук­тов ядерного взрыва непосредственно на кожу и слизистые оболочки человека. Наиболее вероятно заражение незащи­щенных частей тела. Одежда полностью защищает от а-излу-чения и на 25—60% снижает дозу р-излучения.

Санитарная обработка кожи, проведенная через 1 час после заражения, предотвращает поражение от контактного облучения продуктами взрыва. Для уменьшения степени зара­жения техники и других объектов до безопасных величин осу­ществляется их специальная обработка.

При ядерных взрывах в атмосфере возникают мощные электромагнитные поля с длинами волн от 1 до 1000 м и более. В силу кратковременности существования таких полей их принято называть электромагнитным импульсом (ЭМИ).

Поражающее действие ЭМИ обусловлено возникновением электрических напряжений и токов в проводах и кабелях воз­душных и подземных линий связи, сигнализации, электропе­редач, в антеннах радиостанций.

Одновременно с ЭМИ возникают радиоволны, распро­страняющиеся на большие расстояния от центра взрыва; они воспринимаются радиоаппаратурой как помехи.

Поражающим фактором ЭМИ является напряженность. Напряженность электрического и магнитного полей зависит от мощности и высоты взрыва, расстояния от центра взрыва и свойств окружающей среды. Наибольшего значения напря­женность электрических и магнитных полей достигает при на­земных и низких воздушных ядерных взрывах. При низком воздушном взрыве мощностью 1 млн т ЭМИ с поражающими величинами напряженности полей распространяется на пло­щади с радиусом до 32 км, мощностью 10 млн т — до 115 км [21].

Воздействию ЭМИ сильно подвержены линии связи и сиг­нализации, так как применяемые в них кабели и аппаратура


имеют электрическую прочность, не превышающую 2—4 кВ напряжения постоянного тока. Поэтому особую опасность ЭМИ представляет даже для особо прочных сооружений (под­земные пункты управления, убежища и т.п.), в которых под­водящие линии связи могут оказаться поврежденными.

Защита от ЭМИ достигается экранированием линий энер­госнабжения и управления, а также аппаратуры. Все наруж­ные линии должны быть двухпроводными, хорошо изолиро­ванными от земли, с малоинерционными разрядниками и плавкими вставками.

П. Химическое оружие — это боевые средства, поражающее действие которых основано на использовании токсических свойств некоторых химических веществ. К нему относятся бое­вые отравляющие вещества (ОВ) и средства их применения.

Отравляющие вещества — это токсичные химические со­единения, обладающие определенными свойствами, которые делают возможным их боевое применение в целях поражения людей, животных и заражения местности на длительный пе­риод.

Для достижения максимального эффекта в поражении людей ОВ переводят в определенное боевое состояние: пар, аэрозоль, капли. Ими снаряжаются ракеты, авиационные бомбы, артиллерийские снаряды и мины, химические фуга­сы, выливные авиационные приборы (ВАЛ).

В зависимости от боевого состояния ОВ поражают чело­века, проникая через органы дыхания, кожные покровы, же­лудочно-кишечный тракт и раны. Основными путями проник­новения их в организм являются ингаляционный (через органы дыхания) и кожно-резорбтивный (через кожные покровы).

Способность ОВ оказывать поражающее действие на че­ловека называется токсичностью. Основными токсикологи­ческими характеристиками ОВ считаются токсические дозы (токсодозы).

Токсодоза — количественная характеристика токсичности ОВ, соответствующая определенному эффекту поражения. Различают ингаляционную токсодозу ОВ, измеряемую в мг мин/л, и кожно-резорбтивную — в мг/кг, мг/чел.

Территорию, подвергшуюся непосредственному воздействию химического оружия, и территорию, над которой распространяется облако зараженного воздуха в поражающих концентрациях, назы­вают зоной химического заражения.


Гл. 9. Чрезвычайные ситуации мирного и военного времени

9.3. Виды оружия массового поражения и последствия его применения199


 







Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.97.49 (0.021 с.)