Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Механизмы электропроводности твердых телСодержание книги
Поиск на нашем сайте
Проводник — вещество, хорошо проводящее электрический ток; в таком веществе имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри объёма вещества. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, угля и графита. Основные положения Друде-Лоренца. этой теории сводятся к следующим: 1). Носителями тока в металлах являются электроны, движение которых подчиняется законом классической механики. 2). Поведение электронов подобно поведению молекул идеального газа (электронный газ). 3). При движении электронов в кристаллической решетке можно не учитывать столкновения электронов друг с другом. 4). При упругом столкновении электронов с ионами электроны полностью передают им накопленную в электрическом поле энергию. 1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле E =const. Co стороны поля заряд е испытывает действие силы F = eE и приобретает ускорение a=F/m=eE/m. где t — среднее время между двумя последовательными соударениями электрона с ионами решетки. Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время t свободного пробега определяется средней длиной свободного пробега l и средней скоростью движения электронов относительно кристаллической решетки проводника, равной <u>+(v),(< u >) — средняя скорость теплового движения электронов). Ранее нами было показано, что (v)<< <u>, поэтому Подставив значение t в Плотность тока в металлическом проводнике, по откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получили закон Ома в дифференциальной форме. Коэффициент пропорциональности между j и E есть не что иное, как удельная проводимость материала которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега. 2. Закон Джоуля — Ленца. К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание. За единицу времени электрон испытывает с узлами решетки в среднем z столкновений: . Если n — концентрация электронов, то в единицу времени происходит z столкновений и решетке передается энергия которая идет на нагревание проводника. получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени, Величина w является удельной тепловой мощностью тока. Коэффициент пропорциональности между w и E 2 есть удельная проводимость g; следовательно, выражение -закон Джоуля—Ленца в дифференциальной форме. В основе зонной теории лежит так называемое адиабатическое приближение. Кван-тово-механическая система разделяется на тяжелые и легкие частицы - ядра и электроны. Поскольку массы и скорости этих частиц значительно различаются, можно считать, что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле всех электронов. Принимая, что ядра в узлах кристаллической решетки неподвижны, движение электрона рассматривается в постоянном периодическом поле ядер. Далее используется приближение самосогласованного поля. Взаимодействие данного электрона со всеми другими электронами заменяется действием на него стационарного электрического поля, обладающего периодичностью кристаллической решетки. Это поле создается усредненным в пространстве зарядом всех других электронов и всех ядер. Таким образом, в рамках зонной теории многоэлектронная задача сводится к задаче о движении одного электрона во внешнем периодическом поле - усредненном и согласованном поле всех ядер и электронов. Энергетический уровень — собственные значения энергии квантовых систем, то есть систем, состоящих из микрочастиц (электронов, протонов и другихэлементарных частиц) и подчиняющихся законам квантовой механики. Каждый уровень характеризуется определённым состоянием системы, или подмножеством таковых в случае вырождения.
В основе зонной теории лежит так называемое адиабатическое приближение. Кван-тово-механическая система разделяется на тяжелые и легкие частицы - ядра и электроны. Поскольку массы и скорости этих частиц значительно различаются, можно считать, что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле всех электронов. Принимая, что ядра в узлах кристаллической решетки неподвижны, движение электрона рассматривается в постоянном периодическом поле ядер. Далее используется приближение самосогласованного поля. Взаимодействие данного электрона со всеми другими электронами заменяется действием на него стационарного электрического поля, обладающего периодичностью кристаллической решетки. Это поле создается усредненным в пространстве зарядом всех других электронов и всех ядер. Таким образом, в рамках зонной теории многоэлектронная задача сводится к задаче о движении одного электрона во внешнем периодическом поле - усредненном и согласованном поле всех ядер и электронов. Согласно принципу Паули, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа). Поэтому в атоме не должно быть двух электронов с одинаковыми четырьмя квантовыми числами (n, l, ml, ms). Ферми - Дирака статистика квантовая Статистическая физика, применимая к системам тождественных частиц с полуцелым Спином (1/2, 3/2,... в единицах Планка постоянной (См. Планка постоянная) η). Ф. – Д. с. предложена Э. Ферми в 1926; в том же году П. Дирак выяснил её квантовомеханический смысл. В квантовой физике состояние системы описывается волновой функцией (См. Волновая функция), зависящей от координат и спинов всех её частиц. Для системы частиц, подчиняющихся Ф. – Д. с. (Фермионов), волновая функция антисимметрична, т. е. меняет знак при перестановке любой пары тождеств. частиц. В 1940 В. Паули доказал, что тип статистики однозначно связан со спином частиц (в отличие от частиц с полуцелым спином, совокупность частиц с целым спином подчиняется Бозе – Эйнштейна статистике (См. Бозе - Эйнштейна статистика)). Согласно Ф. – Д. с., в каждом квантовом состоянии может находиться не более одной частицы (Паули принцип). Для идеального газа фермионов (Ферми-газа) в случае равновесия среднее число Eiопределяется функцией распределения Ферми: , i помечен набор квантовых чисел, характеризующих состояние частицы,k – Больцмана постоянная, Т –абсолютная температура газа, μ – Химический потенциал. Ф. – Д. с. применима к ферми-газам и ферми-жидкостям. Именно по принципу взаимного расположения этих зон все твердые вещества и делят на три большие группы (см. рис.): проводники — материалы, у которых зона проводимости и валентная зона перекрываются (нет энергетического зазора), образуя одну зону, называемую зоной проводимости (таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию); диэлектрики — материалы, у которых зоны не перекрываются и расстояние между ними составляет более 3 эВ (для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят); полупроводники — материалы, у которых зоны не перекрываются и расстояние между ними (ширина запрещенной зоны) лежит в интервале 0,1–3 эВ (для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые полупроводники слабо пропускают ток). Собственной проводимостью обладают чистые проводники. Атом германия через свои четырехвалентные электроны образует с каждым из четырех соседних атомов германия парноэлектронную связь. При очень низких температурах полупроводники являются диэлектриками. При нагревании или облучении полупроводника энергия валентных электронов повышается и некоторые могут, разорвав связь, стать свободными, также образуется вакантное место называемое дыркой, якобы с положительным зарядом. Число свободных электронов и дырок одинаково. При наложении внешнего электрического поля электроны будут двигаться к +, а дырки к -. Примесные полупроводники получают добавлением примеси с валентностью большей или меньшей. Если валентность примеси больше, то 1 электрон сразу становится свободным. Такие примеси (с большей валентностью) называют донорными, а полупроводник с такой примесью полупроводником n-типа. В таком полупроводнике основные носители электроны, неосновные - дырки. Если валентность примеси меньше, то 1 электрона не хватает, сразу образуется дырка. Такие примеси называют акцепторные, а полупроводники p-типа. Основные носители тока дырки, неосновные - электроны. Свойства p-n-перехода: При тесном соприкосновении разнородных металлов между ними возникает разность потенциалов, зависящая только от их химического состава и температуры (первый закон Вольты). Эта разность потенциалов называется контактной. Для того, чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу против сил притяжения к металлу. Эта работа называется работой выхода электрона из металла. Приведем в контакт два различных металла 1 и 2, имеющих работу выхода соответственно A1 и A2, причем A1 < A2. Очевидно, что свободный электрон, попавший в процессе теплового движения на поверхность раздела металлов, будет втянут во второй металл, так как со стороны этого металла на электрон действует большая сила притяжения (A2 > A1). Следовательно, через контакт металлов происходит «перекачка» свободных электронов из первого металла во второй, в результате чего первый металл зарядится положительно, второй отрицательно. Возникающая при этом разность потенциалов создает электрическое поле напряженностью Е, которое затрудняет дальнейшую «перекачку» электронов и совсем прекратит ее, когда работа перемещения электрона за счет контактной разности потенциалов станет равна разности работ выхода:
|
||||
Последнее изменение этой страницы: 2016-07-11; просмотров: 686; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.161.199 (0.009 с.) |