Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Устойчивость линейных дискретных системСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте Исследование дискретных с-м начинается с оценки их работоспособности, т.е. устойчивости. В классе линейных систем задача решается так же, как и в теории линейных непрерывных САУ, но с учетом особенностей, связанных с квантованием сигналов. Устойчивость для дискретных с-м опр. по поведению переходной составляющей yn(t) общего решения однородного диф. ур-ния исследуемой с-мы. Общее решение представляет собой сумму: y(iTn)=yв(iTn)+yn(iTn), где yв(iTn) вынужденная составляющая процесса, зависящая от внешнего воздействия, а yn(iTn)=nΣk=1 Ak zik переходн. составляющая, т.е. сумма экспоненциальных дискретных ф-ций. zik = ekpiTn. zk - корни характеристического ур-ния замкнутой системы. Дискретная с-ма называется устойчивой, если с течением времени yn(iTn) стремится к нулю. Примеры на рис., где а и б монотонные, в и г - колебательные процессы устойчивых и неустойчивых сис-м. При i → ∞ yn(iTn) будет равна нулю, если все корни zk характеристического ур-ния D*(z) = 0 по модулю будут меньше единицы: |zk| < 1. Устойчивые (а и в) и неустойч. (б и г) процессы в дискрет. с-мах.
Таким образом, необходимое и достаточное условие устойчивости линейных дискретных с-м: замкнутая система будет устойчивой, если корни характеристического уравнения D*(z) = 0 находятся внутри круга единичного радиуса. Если речь идет об устойчивости разомкнутой системы, то оценивается расположение корней уравнения Q*(z) = 0 и применяются сформулированные выше условия.
Свойства нелинейных систем САУ явл. нелинейной, если хотя бы один ее конструктивный элемент описывается нелинейн. ур-м. Если переменные y(t), x(t) и их производные входят в диф.ур. в виде произведений, частных или степеней, то ур-ние явл. нелинейным. Практически все реальные САУ содержат 1 или несколько нелинейных эл-в (нелинейностей). Различают два вида нелинейных элементов, существенно нелинейные и несущественно нелинейные. Нелинейность считается несущественной, если ее замена линейным эл-м не изменяет принципиальных особенностей с-мы и процессы в с-ме не отличаются от процессов в реальной системе. В противном случае - существенная. САУ с существенными нелинейностями имеет особенности, кот. не присущи линейным с-м. Главная особенность в том, что они не подчиняются принципу наложения, а характер и показатели переходного процесса зависят от величины внешнего воздействия или начального отклонения. Например, при малом начальном отклонении x1(0), меньшем некот. критического значения хкр, переходный процесс может быть апериодическим (а - линия 1), а при большом начальном отклонении х2(0) > хкр - колебательным (а - линия 2). Другой важной особенностью явл. зависимость условий устойчивости от величины внешнего воздействия: САУ, устойчивая при одних значениях начального отклонения, оказывается неустойчивой при других его значениях. На рис. б показаны переходные процессы х1 и х2, один из кот. вызван большим начальным отклонением и сходится к устойчивому колебательному процессу, а второй, вызванный малым начальным отклонением, расходится и тоже стремится к колебательному процессу.
При анализе нелинейн. С-м обычно решают следующие задачи: 1) отыскание возможных состояний равновесия с-мы и оценка их устойчивости; 2) определение возможности сущ-ния автоколебаний и оценка их устойчивости; 3) выявление соотношений между параметрами с-мы, при кот. возникают автоколебания; 4) опр. параметров автоколебаний и их связи с параметрами с-мы. Типовые виды нелинейности Можно выделить 3 группы нелинейных звеньев: Нелинейные звенья с однозначными хар-ми (статич. нелинейности). Однозначная хар-ка звена свидетельствует о том, что кроме наличия чувствительности к значению входной координаты, звено нечувствительно ни к направлению движения входн. координаты ни к её производным. Модели таких звеньев можно составить без применения блоков с эффектом памяти (интеграторов, регистров задержки). Спец. моделирующие программы имеют в своих библиотеках готовые блоки с однозначными нелинейностями. Звенья: "Зона нечувствительности", "Ограничение", "Реле двухпозиционное без гистерезиса", "Реле трехпозиционное без гистерезиса", "АЦП без гистерезиса" Нелинейные звенья с многозначн. хар-ми (динамич. нелинейности). Многозначная характеристика звена свидетельствует о том, что звено чувствительно либо к направлению её движения, либо к значению её производных. Модели таких звеньев невозможно составить без применения блоков с эффектом памяти (интеграторов, регистров задержки, звеньев чистого запаздывания). Программы могут иметь соответств. составные модели - нелинейн. звенья с многозначными характ-ми. Звенья: "Реле двухпозиционное с положительным или с отрицательным гистерезисом", "Реле трехпозиционное с положительным или с отрицательным гистерезисом", "Люфт","Упор", "Сухое трение", "Магнитный гистерезис" Особые нелинейные элементы (не поддаются классификации). К группе особых нелинейных звеньев относят те, чьи свойства уникальны и не поддаются классификации. Некоторым особым нелинейным звеньям свойственен атрибут функциональной завершенности. Др. особые звенья, например, "множительное" или "ψ-ячейка" часто входят, как составные части, в блок-схемы более сложных звеньев с неоднозначными характеристиками. Звено множительное. Звено с параболической четной характеристикой. Звено с параболической нечетной характеристикой. Звено "ψ-ячейка".
|
||
|
Последнее изменение этой страницы: 2016-04-26; просмотров: 766; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.102 (0.007 с.) |