Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Устойчивость линейных дискретных систем↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Исследование дискретных с-м начинается с оценки их работоспособности, т.е. устойчивости. В классе линейных систем задача решается так же, как и в теории линейных непрерывных САУ, но с учетом особенностей, связанных с квантованием сигналов. Устойчивость для дискретных с-м опр. по поведению переходной составляющей yn(t) общего решения однородного диф. ур-ния исследуемой с-мы. Общее решение представляет собой сумму: y(iTn)=yв(iTn)+yn(iTn), где yв(iTn) вынужденная составляющая процесса, зависящая от внешнего воздействия, а yn(iTn)=nΣk=1 Ak zik переходн. составляющая, т.е. сумма экспоненциальных дискретных ф-ций. zik = ekpiTn. zk - корни характеристического ур-ния замкнутой системы. Дискретная с-ма называется устойчивой, если с течением времени yn(iTn) стремится к нулю. Примеры на рис., где а и б монотонные, в и г - колебательные процессы устойчивых и неустойчивых сис-м. При i → ∞ yn(iTn) будет равна нулю, если все корни zk характеристического ур-ния D*(z) = 0 по модулю будут меньше единицы: |zk| < 1. Устойчивые (а и в) и неустойч. (б и г) процессы в дискрет. с-мах. Таким образом, необходимое и достаточное условие устойчивости линейных дискретных с-м: замкнутая система будет устойчивой, если корни характеристического уравнения D*(z) = 0 находятся внутри круга единичного радиуса. Если речь идет об устойчивости разомкнутой системы, то оценивается расположение корней уравнения Q*(z) = 0 и применяются сформулированные выше условия.
Свойства нелинейных систем САУ явл. нелинейной, если хотя бы один ее конструктивный элемент описывается нелинейн. ур-м. Если переменные y(t), x(t) и их производные входят в диф.ур. в виде произведений, частных или степеней, то ур-ние явл. нелинейным. Практически все реальные САУ содержат 1 или несколько нелинейных эл-в (нелинейностей). Различают два вида нелинейных элементов, существенно нелинейные и несущественно нелинейные. Нелинейность считается несущественной, если ее замена линейным эл-м не изменяет принципиальных особенностей с-мы и процессы в с-ме не отличаются от процессов в реальной системе. В противном случае - существенная. САУ с существенными нелинейностями имеет особенности, кот. не присущи линейным с-м. Главная особенность в том, что они не подчиняются принципу наложения, а характер и показатели переходного процесса зависят от величины внешнего воздействия или начального отклонения. Например, при малом начальном отклонении x1(0), меньшем некот. критического значения хкр, переходный процесс может быть апериодическим (а - линия 1), а при большом начальном отклонении х2(0) > хкр - колебательным (а - линия 2). Другой важной особенностью явл. зависимость условий устойчивости от величины внешнего воздействия: САУ, устойчивая при одних значениях начального отклонения, оказывается неустойчивой при других его значениях. На рис. б показаны переходные процессы х1 и х2, один из кот. вызван большим начальным отклонением и сходится к устойчивому колебательному процессу, а второй, вызванный малым начальным отклонением, расходится и тоже стремится к колебательному процессу. При анализе нелинейн. С-м обычно решают следующие задачи: 1) отыскание возможных состояний равновесия с-мы и оценка их устойчивости; 2) определение возможности сущ-ния автоколебаний и оценка их устойчивости; 3) выявление соотношений между параметрами с-мы, при кот. возникают автоколебания; 4) опр. параметров автоколебаний и их связи с параметрами с-мы. Типовые виды нелинейности Можно выделить 3 группы нелинейных звеньев: Нелинейные звенья с однозначными хар-ми (статич. нелинейности). Однозначная хар-ка звена свидетельствует о том, что кроме наличия чувствительности к значению входной координаты, звено нечувствительно ни к направлению движения входн. координаты ни к её производным. Модели таких звеньев можно составить без применения блоков с эффектом памяти (интеграторов, регистров задержки). Спец. моделирующие программы имеют в своих библиотеках готовые блоки с однозначными нелинейностями. Звенья: "Зона нечувствительности", "Ограничение", "Реле двухпозиционное без гистерезиса", "Реле трехпозиционное без гистерезиса", "АЦП без гистерезиса" Нелинейные звенья с многозначн. хар-ми (динамич. нелинейности). Многозначная характеристика звена свидетельствует о том, что звено чувствительно либо к направлению её движения, либо к значению её производных. Модели таких звеньев невозможно составить без применения блоков с эффектом памяти (интеграторов, регистров задержки, звеньев чистого запаздывания). Программы могут иметь соответств. составные модели - нелинейн. звенья с многозначными характ-ми. Звенья: "Реле двухпозиционное с положительным или с отрицательным гистерезисом", "Реле трехпозиционное с положительным или с отрицательным гистерезисом", "Люфт","Упор", "Сухое трение", "Магнитный гистерезис" Особые нелинейные элементы (не поддаются классификации). К группе особых нелинейных звеньев относят те, чьи свойства уникальны и не поддаются классификации. Некоторым особым нелинейным звеньям свойственен атрибут функциональной завершенности. Др. особые звенья, например, "множительное" или "ψ-ячейка" часто входят, как составные части, в блок-схемы более сложных звеньев с неоднозначными характеристиками. Звено множительное. Звено с параболической четной характеристикой. Звено с параболической нечетной характеристикой. Звено "ψ-ячейка".
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 679; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.29.103 (0.01 с.) |