Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Логарифмические частотные характеристики звеньевСодержание книги
Поиск на нашем сайте
Для инженерных расчетов более удобнее использовать логарифмические частотные характеристики. Они представляют собой построение АЧХ и ФЧХ в логарифмическом масштабе. Простота использования таких хар-к опред-ся тем, что для получения результирующих хар-к можно графически складывать частотные хар-ки, а для типовых динамич. звеньев можно элементарно просто строить асимптотические ЛАЧХ, т.е. хар-ки в виде ломанных линий из прямолинейных отрезков, к кот. приближаются действительные ЛАЧХ, рассматриваемых динамич. звеньев. По оси абсцисс в таких координатных сетках откладывают частоту в логарифмическом масштабе. За ед. прин. декада (при десятикратной разнице в частотах) или октава (двукратной разнице в частотах). Декада и октава - это акустические единицы. По оси ординат в равновесном масштабе откладывают логарифмическую амплитуду, в логарифмических безразмерных величинах. Единица измерения принят дБ. Белл – логарифмическая единица, соответствующая десятикратному ув. мощности. При построении логарифм. хар-к по оси ординат откладывают логарифмич. амплитуду в дБ и аргумент в градусах или радианах, а по оси абсцисс lg в декадах. ЛАЧХ - зависимость модуля коэф. усиления (напряжения, тока или мощности) устройства, (, для мощности , от частоты в логарифмическом масштабе. Масштаб по оси абсцисс. откладывается частота в логарифмическом масштабе, единица измерения - безразмерная величина: декада (дек). Масштаб по оси ординат ЛАЧХ. откладывается амплитуда выходного сигнала в логарифмических безразмерных величинах: децибел (дБ) (десятая часть бела) - это отношение мощностей. Позиционные звенья Типовыми динамич. звеньями наз. звенья, описываемые ДифУр не выше 2-го порядка. Такие звенья классифиц-ся в зависимости от вида левой и правой частей ур-ния. Все типовые звенья можно разделить на 3 группы: Позиционные, Интегрирующие и Дифференцирующ. звенья. Позиционные звенья - звенья, в кот. выходн. и входн. величины в установившемся режиме связаны линейн. зависимостью y(t)=kg(t). А переходная ф-ция будет иметь вид W(s)=k , где N(s), L(s) - многочлены. Примеры реализации звена: механич. передачи (рычаги, редукторы) при их тщательном изготовлении, электр. усилители, делитель напряжений. 1. Идеальн. усилительн. (безынерционное) звено, ур-ние в стандартной форме: y(t)=kg(t), где k= -коэф. передачи. Передат. ф-ция для идеальн. звена: W(s)=k. 2. Усилительн. звено с запаздыванием: y(t)=kg(t-t), где k= -коэф. передачи. В операторной форме: y(t)=kg(t-t). Передат. ф-ция: W(s)= ke-ts. 3. Устойчивое апериодическое звено 1-го порядка: T1 +y(t)=kg(t), где k= -коэф. передачи, T1= -постоян. времени. В операторной форме: (T1 p+1)y(t)=kg(t). Передаточ. ф-ция для апериодического звена: W(s)= . 4. Неустойчивое апериодическое звено 1-го порядка: T -y(t)=kg(t), где k= -коэф. передачи, T= -постоянная времени. В операторной форме: (T p-1)y(t)=kg(t). Передат. ф-ция: W(s)= . 5. Апериодич. звено 2-го порядка: +T1 +y(t)=kg(t). W(s)= . 6. Колебательн. (устойчивое) звено: +T1 +y(t)=kg(t), W(s)= . Интегрирующие звенья Типовыми динамич. звеньями наз. звенья, описываемые ДифУр не выше 2-го порядка. Такие звенья классифиц-ся в зависимости от вида левой и правой частей ур-ния. Все типовые звенья можно разделить на 3 группы: Позиционные, Интегрирующие и Дифференцирующ. звенья. Интегрирующие звенья: C(p)y=k*x/p, C(p)p=0=1. 1. Идеальное интегрирующ. звено. Если постоянная времени звена значительно меньше последующего за ним. y=k*x/p; dy/dt=kx; Wp = k/p. Рис – передаточн. ф-ция и переходный процесс интегрирующего звена. На практике сущ. интегрирующие звенья с замедлением. (Tp+1)y=kx/p, где (Tp+1) - замедление W (p)=к/(Tp+1). Пример - электродвигатель постоянного тока, у кот. в качестве выходной величины рассмат-ся угол поворота. 2. Изодромное звено - W (p) = k1 /p+k2, где k1 и k2 - передаточн. коэф. PY = (k1 + k2 p)x. W(p)=k(Tp+1)/p, T = k1/k2. Изодромное звено представляет собой дифференцирующ. звено с замлением и интегрирующ., вкл. последовательно. Его можно представить в виде совокупности двух звеньев соединеннных параллельно: идеального интегрирующего с k1 и параллельно включенного безинерционного с k2. Примером интегрирующ. звена может служить гидравлич. исполнительный мех-м кот. находит широкое прим. в современных сис-х регулир-ния. Входной величиной для него является перепад давлений ∆Рвх, а выходной - перемещение ∆Sвых поршня. Сила давления на поршень равна fn=(P01-P02)F, где F – эффективн. площадь поршня. Если пренебречь трением и инерцией поршня и связанных с ним масс, то можно считать, что это усиление целиком расходуется на преодоление внешней нагрузки, приложенной к поршню (сопротивление перемещению регулирующего органа, заслонки и т. п.). Дифференцирующее звено Типовыми динамич. звеньями наз. звенья, описываемые ДифУр не выше 2-го порядка. Такие звенья классифиц-ся в зависимости от вида левой и правой частей ур-ния. Все типовые звенья можно разделить на 3 группы: Позиционные, Интегрирующие и Дифференцирующ. звенья. Дифференцирующее звено. Выходн. величина дифференц-го звена пропорциональна производной по времени от входн. величины: xвых=k(dxвх/dt). W(p)=kp. Если входн. и выходн. величины имеют одинаковую размерность, то коэф. k изм-ся в сек. В этом случае его принято обозначать через Т и наз. постоянной времени диф-го звена. 1. Идеальное диф-щее звено. Уравнение: или в операторной форме . Передаточн. ф-ция . Ед. идеальным диф-щим звеном, кот. точно описывается ур-м, явл. тахогенератор постоян. тока (рис), если в качестве входн. величины рассм-ть угол поворота его ротора a, а в качестве вых. – напряж. якоря U. Переходн. ф-ция звена при х 1 = 1(t); A (t) = k 1 ’ (t) = k w(t) представляет собой импульсную функцию, площадь которой равна k. 2. Реальное диф-щее звено. Уравнение: . Передат. ф-ция звена . Звено условно можно представить в виде двух включенных последовательно звеньев – идеальн. диф. звена и апериодич. звена первого порядка. Рис. диф. RC-цепь (а), RL-цепь (б) и диф-щий трансформатор (в).
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 492; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.190.74 (0.008 с.) |