Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Отношение эквивалентности. Связь отношения эквивалентности с разбиением множества на классы. Отношение порядка. Строгий и нестрогий порядок. Линейный и частный порядок. Упорядоченные множества.

Поиск

Эквивалентность – это равнозначность (или равноценность) в каком-нибудь отношении.

Отношение на множестве называется эквивалентностью (или отношением эквивалентности), если существует разбиение множества такое, что соотношение выполняется тогда и только тогда, когда и принадлежат некоторому общему классу данного разбиения.

Пусть – разбиение множества . Определим, исходя из этого разбиения, отношение на : , если и принадлежат некоторому общему классу данного разбиения. Очевидно, отношение является эквивалентностью. Назовем отношением эквивалентности, соответствующим исходному разбиению.

Например, разбиение состоит из подмножеств множества , содержащих ровно по одному элементу. Соответствующее отношение эквивалентности есть отношение равенства . Наконец, если разбиение множества состоит из одного подмножества, совпадающего с самим , то соответствующее отношение эквивалентности есть полное отношение: любые два элемента являются эквивалентными.

Пустое отношение (на непустом множестве!) не является эквивалентностью.

Мы подошли к эквивалентности через понятие взаимозаменимости. Но что значит, что два объекта и взанмозамепимы в данной ситуации? Это всегда можно понимать так, что каждый из них содержит всю информацию о другом объекте, небезразличную в данной ситуации. Это утверждение означает только то, что взаимозаменимость объектов есть совпадение признаков, существенных в данной ситуации.

Например, пусть считаем одинаковыми автомобили, выпущенные в одной и той же серии одним и тем же заводом. Тогда, разобрав один экземпляр «Волги», в принципе можем составить комплект рабочих чертежей, который годится для выпуска однотипных «Волг». Однако, изучив один экземпляр «Волги», не можем угадать окраску кузова или характер вмятин на бампере у других односерийных экземпляров.

Когда мы выбираем из комплекта одну шахматную фигуру, то мы знаем, куда ее можно поставить в начальной позиции и как ходят, все взаимозаменяемые с ней, т.е. одноименные и одноцветные, фигуры.

Пусть теперь задано разбиение множества . Выберем в каждом множестве некоторый содержащийся в нем элемент . Этот элемент мы будем называть эталоном для всякого элемента , входящего в то же множество . Мы будем – по определению – полагать выполненным соотношение . Так определенное отношение назовем отношением «быть эталоном»..

Легко видеть, что эквивалентность , соответствующая исходному разбиению, может быть определена так: , если и имеют общий эталон: и .

Ясно, что любое отношение эквивалентности может быть таким образом определено с помощью отношения «быть эталоном» и, наоборот, любое отношение «быть эталоном» определяет некоторую эквивалентность.

Пусть – отношение эквивалентности, а – такое отношение «быть эталоном», что выполнено в том и только том случае, когда и имеют общий эталон .

Иначе говоря, равносильно существованию такого , что и . Поскольку , это означает, что . Иначе говоря, эквивалентность можно алгебраически выразить через более простое отношение «быть эталоном». Отношение на множестве из элементов можно задать графом, имеющим ровно стрелок, где – число классов эквивалентности: каждый элемент соединяется со своим единственным эталоном. Граф, изображающий отношение эквивалентности, состоит из полных подграфов, содержащих по , вершин . Таким образом, общее число ребер в этом графе равно .

Рассмотрим в качестве множество всех целых неотрицательных чисел и возьмем его разбиение на множество четных чисел и множество нечетных чисел. Соответствующее отношение эквивалентности на множестве целых чисел обозначается так: и читается: сравнимо с по модулю 2. В качестве эталонов здесь естественно выбрать 0 – для четных чисел и 1 – для нечетных чисел. Аналогично, разбивая то же множество на подмножеств , где состоит из всех чисел, дающих при делении на и остатке , мы придем к отношению эквивалентности: , которое выполняется, если и имеют одинаковый остаток при делении на . В качестве эталона в каждом естественно выбрать соответствующий остаток .

 



Поделиться:


Последнее изменение этой страницы: 2016-04-25; просмотров: 734; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.92.5 (0.014 с.)