Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тест №1. Имитационная модель системы массового обслуживания↑ Стр 1 из 5Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Тесты для магистрантов по дисциплинам цикла Математическое моделирование Перечень тестов: Тест №1. Имитационная модель системы массового обслуживания Тест№2. Классическая система массового обслуживания с очередями Тест № 3 – Классическая система массового обслуживания отказами. Тест№4. Теория расписаний. Задача упорядочения. Тест№5. Теория расписаний. Задача распределения. Тест№6. Моделирование оптимального управления порожними вагонами различных форм собственности. Тест № 7 – Сети Петри. Тест № 8 – Оптимизация распила входного материала при изготовлении металлопластиковых окон. Тест №1. Имитационная модель системы массового обслуживания В соответствии с блок-схемой алгоритма имитационного моделирования системы массового обслуживания с отказами, приведенной ниже,
составить программу функционирования модели СМО с отказами. Для всех вариантов: число опытов N (число рабочих дней, например) взять равным N = 200, продолжительность опыта Tкон (продолжительность рабочего дня) взять равным Tкон = 8 часов = 480 минут, число линий обслуживания (число занятых обслуживанием устройств) «n» взять равным n = 5. В соответствии с номером варианта и данными таблицы, запрограммировать моделирование случайных величин (интервал между заявками) и tзан (время выполнения заявок) по их плотностям вероятности f1() и f2(t) из таблицы. Таблица
Запрограммировать накопление числа выполненных заявок и числа отказов в соответствующих счетчиках. После «проигрывания» модели 200 раз запрограммировать вычисление и вывод на печать (на экран) следующих характеристик СМО с отказами: - среднее число выполненных заявок и оценку вероятности выполнения заявки; - среднее число отказов и оценку вероятности отказа. Аналогично предыдущему разработать модель СМО с очередью с теми же исходными данными, что и в предыдущем разделе и с помощью этой модели получить следующие характеристики: - среднюю длину очереди; - оценку вероятности отсутствия очереди; - оценку вероятности того, что все устройства обслуживания будут заняты.
При определенных условиях, накладываемых на систему массового обслуживания с отказами (стационарность, ординарность и отсутствие последействия для потока заявок и для времени выполнения заявок и т. д.) для характеристик системы могут быть получены аналитические выражения. Будем называть такие системы классическими. Вероятность k – того состояния системы pk вычисляется по формуле pk = k / k! (1) где , = -1, k = 0, 1, 2, …, n (2) Вероятность отказа pотк = pn, то - есть она вычисляется по формуле (1) при k = n. Среднее число занятых устройств m вычисляется по формуле m = (1 - pn) (3) Задание: зная параметры системы массового обслуживания (СМО) с отказами: - интенсивность потока заявок, - интенсивность обслуживания, n – число каналов обслуживания, найти характеристики СМО: вероятности состояний p0, p1, p2, … pn; среднее число занятых устройств и вероятность отказа (в стационарном режиме). Значения параметров СМО для различных вариантов задания приведены в таблице:
Найти ответ на вопрос: сколько должно быть устройств обслуживания, чтобы вероятность отказа была не более 0,1?
Задание Построить оптимальное по быстродействию расписание выполнения совокупности работ A=(a1, a2, a3, a4, a5) на ресурсах A, B, C. Времена выполнения каждой работы на каждом ресурсе приведены в таблице для каждого варианта.
Задания В таблицах по каждому варианту представлены: запасы вагонов в пунктах Ai – в последнем столбике таблицы (в правом верхнем углу клетки-вагоны перевозчика, в левом нижнем углу клетки-вагоны других форм собственности), заявки на вагоны от пунктов Bj – в последней строке таблицы, в правом верхнем углу остальных клеток транспортные расходы по перемещению одного вагона из Ai в Bj - Cij для вагонов перевозчика, а в левом нижнем углу - Cij* для вагонов других форм собственности. Составить оптимальный план распределения вагонов. №1
№2
№3
№4
№5
№6
№7
№8
№9
№10
№11
№12
№13
№14
№15
№16
№17
№18
|