Точечные оценки математического ожидания и дисперсии



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Точечные оценки математического ожидания и дисперсии



Пусть случайная выборка порождена наблюдаемой случайной величиной ξ, математическое ожидание и дисперсия которой неизвестны. В качестве оценок для этих характеристик было предложено использовать выборочное среднее

и выборочную дисперсию

. (3.14)

Рассмотрим некоторые свойства оценок математического ожидания и дисперсии.

1. Вычислим математическое ожидание выборочного среднего:

. (3.15)

Следовательно, выборочное среднее является несмещенной оценкой для .

2. Напомним, что результаты наблюдений – независимые случайные величины, каждая из которых имеет такой же закон распределения, как и величина , а значит, , , . Будем предполагать, что дисперсия конечна. Тогда, согласно теореме Чебышева о законе больших чисел, для любого ε > 0 имеет место равенство ,

которое можно записать так: . (3.16) Сравнивая (3.16) с определением свойства состоятельности (3.11), видим, что оценка является состоятельной оценкой математического ожидания .

3. Найдем дисперсию выборочного среднего:

. (3.17)

Таким образом, дисперсия оценки математического ожидания уменьшается обратно пропорционально объему выборки.

Можно доказать, что если случайная величина ξ распределена нормально, то выборочное среднее является эффективной оценкой математического ожидания , то есть дисперсия принимает наименьшее значение по сравнению с любой другой оценкой математического ожидания. Для других законов распределения ξ это может быть и не так.

Выборочная дисперсия является смещенной оценкой дисперсии , так как . (3.18)

Действительно, используя свойства математического ожидания и формулу (3.17), найдем

.

Чтобы получить несмещенную оценку дисперсии, оценку (3.14) нужно исправить, то есть домножить на . Тогда получим несмещенную выборочную дисперсию

. (3.19)

Отметим, что формулы (3.14) и (3.19) отличаются лишь знаменателем, и при больших значениях выборочная и несмещенная дисперсии отличаются мало. Однако при малом объеме выборки следует пользоваться соотношением (3.19).

Для оценки среднего квадратического отклонения случайной величины используют так называемое “исправленное” среднее квадратическое отклонение, которое равно квадратному корню из несмещенной дисперсии: .

Интервальные оценки

В статистике имеются два подхода к оцениванию неизвестных параметров распределений: точечный и интервальный. В соответствии с точечным оцениванием, которое рассмотрено в предыдущем разделе, указывается лишь точка, около которой находится оцениваемый параметр. Желательно, однако, знать, как далеко может отстоять в действительности этот параметр от возможных реализаций оценок в разных сериях наблюдений.

Ответ на этот вопрос – тоже приближенный – дает другой способ оценивания параметров – интервальный. В соответствии с этим способом оценивания находят интервал, который с вероятностью, близкой к единице, накрывает неизвестное числовое значение параметра.

Понятие интервальной оценки

Точечная оценка является случайной величиной и для возможных реализаций выборки принимает значения лишь приближенно равные истинному значению параметра . Чем меньше разность , тем точнее оценка. Таким образом, положительное число , для которого , характеризует точность оценки и называется ошибкой оценки (или предельной ошибкой).

Доверительной вероятностью (или надежностью) называется вероятность β, с которой осуществляется неравенство , т. е.

. (3.20)

Заменив неравенство равносильным ему двойным неравенством , или , получим

. (3.21)

Интервал , накрывающий с вероятностью β, , неизвестный параметр , называется доверительным интервалом (или интервальной оценкой), соответствующим доверительной вероятности β.

Случайной величиной является не только оценка , но и ошибка : ее значение зависит от вероятности β и, как правило, от выборки. Поэтому доверительный интервал случаен и выражение (3.21) следует читать так: “Интервал накроет параметр с вероятностью β ”, а не так: “Параметр попадет в интервал с вероятностью β ”.

Смысл доверительного интервала состоит в том, что при многократном повторении выборки объема в относительной доле случаев, равной β, доверительный интервал, соответствующий доверительной вероятности β, накрывает истинное значение оцениваемого параметра. Таким образом, доверительная вероятность β характеризует надежность доверительного оценивания: чем больше β, тем вероятнее, что реализация доверительного интервала содержит неизвестный параметр.

Следует, однако, иметь в виду, что с ростом доверительной вероятности β в среднем растет длина доверительного интервала, то есть уменьшается точность доверительного оценивания. Выбор доверительной вероятности определяется конкретными условиями; обычно используются значения β, равные 0,90; 0,95; 0,99.

Вероятность (3.22)

называется уровнем значимости и характеризует относительное число ошибочных заключений в общем числе заключений.

В формуле (3.21) границы доверительного интервала симметричны относительно точечной оценки. Однако не всегда удается построить интервал, обладающий таким свойством. Более общим является следующее определение.

Доверительным интервалом (или интервальной оценкой) параметра с доверительной вероятностью β,0< β <1, называется интервал со случайными границами , , накрывающий с вероятностью β неизвестный параметр , т. е.

. (3.23)

Иногда вместо двусторонних доверительных интервалов рассматривают односторонние доверительные интервалы, полагая или .

 



Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.214.224.207 (0.013 с.)