ТОП 10:

Траектория путь перемещение скорость ускорение определение



Линию, вдоль которой движется материальная точка, называют траекторией. Длину траектории называют путем. Единица пути — метр.
Путь = скорость* время. S=v*t.
Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называется перемещением (s). Перемещение — величина векторная. Единица перемещения — метр.
Скорость — векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка времени.
Формула скорости имеет вид v = s/t. Единица скорости — м/с
Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Формула для вычисления ускорения: a=(v-v0)/t; Единица ускорения – метр/(секунда в квадрате).

Составляющие ускорения тангенциальное и нормальное ускорения

Тангенциальное ускорение направлено по касательной к траектории

Нормальное ускорение направлено по нормали к траектории

 

Тангенциальное ускорение характеризует изменение скорости по величине. Если скорость по величине не изменяется, то тангенциальная составляющая равна нулю, а нормальная составляющая ускорения равна полному ускорению.

Нормальное ускорение характеризует изменение скорости по направлению. Если направление скорости не изменяется, движение происходит по прямолинейной траектории.

 

В общем случае полное ускорение:

Итак, нормальная составляющая вектора ускорения

быстрота изменения со временем направления касательной к траектории. Она тем больше ( ), чем больше искривлена траектория и чем быстрее перемещается частица по траектории.

4)Угловой путь

Угловой путьэто элементарный угол поворота:

, .

Радиан – это угол, который вырезает на окружности дугу, равную радиусу.

Направление углового пути определяется правилом правого винта: если головку винта вращать в направлении движения точки по окружности, то поступательное движение острия винта укажет направление .

Угловая скорость (средняя и мгновенная)

Средняя угловая скоростьэто физическая величина, численно равная отношению углового пути к промежутку времени:

, .

Мгновенная угловая скоростьэто физическая величина, численно равная изменения пределу отношения углового пути к промежутку времени при стремлении данного промежутка к нулю, или является первой производной углового пути по времени:

, .

Угловое ускорение (среднее и мгновенное)

Среднее угловое ускорениеэто физическая величина, численно равная отношению изменения угловой скорости к промежутку времени, за который это изменение произошло:

, .

Мгновенное угловое ускорениеэто физическая величина, численно равная пределу отношения изменения угловой скорости к промежутку времени при стремлении данного промежутка к нулю, или является первой производной угловой скорости по времени, или второй производной углового пути по времени:

, .

 

При ускоренном движении угловое ускорение совпадает по направлению с угловой скоростью. При замедленном вращении угловое ускорение направлено в противоположную относительно угловой скорости сторону.

Законы Ньютона

Первый закон Ньютона

  • Инерциальной называется та система отсчёта, относительно которой любая, изолированная от внешних воздействий, материальная точка либо покоится, либо сохраняет состояние равномерного прямолинейного движения.
  • Первый закон Ньютона гласит:
Инерциальные системы отсчёта существуют.

По сути, этот закон постулирует инерцию тел, что сегодня кажется очевидным. Но это было далеко не так на заре исследования природы. Аристотель вот утверждал, что причиной всякого движения является сила, т. е. движения по инерции для него не существовало. [источник?]

 

Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и её ускорением.

Второй закон Ньютона утверждает, что

в инерциальной системе отсчета (ИСО) ускорение, которое получает материальная точка, прямо пропорционально приложенной силе и обратно пропорционально массе.

При подходящем выборе единиц измерения этот закон можно записать в виде формулы:

где — ускорение тела;

— сила, приложенная к телу;

m — масса тела.

Или в более известном виде:

Если на тело действуют несколько сил, то второй закон Ньютона записывается:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется в общем виде: скорость изменения импульса точки равна действующей на неё силе.

где — импульс (количество движения) точки;

t — время;

— производная по времени.

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта.

Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Сам закон:

Тела действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению:

Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U( | r1r2 | ). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены все остальные законы механики.







Последнее изменение этой страницы: 2016-04-20; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.22.210 (0.008 с.)