Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Механическое движение, его характеристики. Относительность скорости, перемещения, траектории

Поиск

Механическое движение, его характеристики. Относительность скорости, перемещения, траектории

 

Механическим движением тела называется изменение положения тела в пространстве относительно других тел с течением времени. При рассмотрении вопросов, связанных с движением тел, можно не принимать во внимание размеры тела. Тело, размерами которого в данных условиях можно пренебречь, называют материальной точкой. Положение тела (точки) в пространстве можно определить относительно какого-либо другого тела, выбранного за тело отсчета A. Тело отсчета, связанная с ним система координат и часы составляют систему отсчета.

Характеристики механического движения тела: траектория (линия, вдоль которой движется тело), перемещение (направленный отрезок прямой, соединяющий начальное положение тела M1 с его последующим положением M2), скорость (отношение перемещения ко времени

движения - для равномерного движения). Характеристики механического движения относительны, т.е. они могут быть различными в разных системах отсчета. Например, за движением лодки следят два наблюдателя: один на берегу в точке O, другой - на плоту в точке O1. Проведем мысленно через точку О систему координат XOY - это неподвижная система отсчета. Другую систему X'O'Y' свяжем с плотом - это подвижная система координат. Относительно системы X'O'Y' (плота) лодка за время t совершает перемещение и будет двигаться со скоростью. Относительно системы XOY (берег) лодка за это же время совершит перемещение,, где -

перемещение плота относительно берега. Скорость лодки относительно берега или. Скорость тела относительно неподвижной системы координат равна геометрической сумме скорости тела относительно подвижной системы и скорости этой системы относительно неподвижной.

2. Виды механического движения - прямолинейное равномерное, прямолинейное равноускоренное, равномерное движение

по окружности В зависимости от формы траектории движение может быть прямолинейным и криволинейным. Движение называется прямолинейным и равномерным, если за любые сколь угодно малые равные промежутки времени тело совершает одинаковые

перемещения. Запишем математическое выражение этого определения. Это значит, что перемещение определяют по формуле, а координату - по формуле. Движение тела, при котором его скорость за любые равные промежутки времени изменяется одинаково, называется равноускоренным движением. Для характеристики этого движения нужно знать скорость тела в данный момент времени или в данной точке траектории, т.е. мгновенную скорость, а также ускорение. Мгновенная скорость - это отношение достаточно

малого перемещения на участке траектории, примыкающей к этой точке, к малому промежутку времени, в течение которого это перемещение совершается. Ускорение - величина, равная отношению изменения скорости к промежутку времени, в течение которого это изменение

произошло. Иначе, ускорение - это быстрота изменения скорости:. Отсюда формула мгновенной скорости:. Перемещение при этом движении определяют по формуле:. При равномерном движении по окружности углы поворота радиуса за любые равные промежутки времени будут одинаковы. Поэтому угловая скорость, она измеряется в рад/с. При этом движении модуль скорости постоянный, он направлен по касательной к траектории и постоянно меняет направление (см. рис.), поэтому возникает центростремительное ускорение.

3. Законы Ньютона. Примеры проявления законов Ньютона в природе и использование этих законов в технике

Первый закон Ньютона. Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действия других тел компенсируются). Этот закон часто называется законом инерции, поскольку движение с постоянной скоростью при компенсации внешних воздействий на тело называется инерцией.

Второй закон Ньютона. Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение. - ускорение прямо пропорционально действующей (или равнодействующей) силе и обратно пропорционально массе тела.

Третий закон Ньютона. Из опытов по взаимодействию тел следует, из второго закона Ньютона и, поэтому. Силы взаимодействия между телами: направлены по одной прямой, равны по величине, противоположны по направлению, приложены к разным телам (поэтому не

могут уравновешивать друг друга), всегда действуют парами и имеют одну и ту же природу. Законы Ньютона выполняются одновременно, они позволяют объяснить закономерности движения планет, их естественных и искусственных спутников. Иначе, позволяют

предвидеть траектории движения планет, рассчитывать траектории космических кораблей и их координаты в любые заданные моменты времени. В земных условиях они позволяют объяснить течение воды, движение многочисленных и разнообразных транспортных средств

(движение автомобилей, кораблей, самолетов, ракет). Для всех этих движений, тел и сил справедливы законы Ньютона.

5. Импульс тела. Закон сохранения импульса. Примеры проявления закона сохранения импульса в природе и использования этого закона в технике

Импульс тела - это произведение массы тела на его скорость (). Импульс тела - величина векторная.

Предположим, что взаимодействуют друг с другом два тела (тележки) (см. рис.) с массами m1 и m2, движущиеся относительно выбранной системы отсчета со скоростями и. На тела при их взаимодействии действовали соответственно силыи, и после взаимодействия они стали двигаться со скоростями и. Тогда,, t - время взаимодействия. Согласно третьему закону Ньютона, следовательно, или. В левой части равенства - сумма импульсов обоих тел (тележек) до взаимодействия, в правой - сумма импульсов тех же тел после взаимодействия. Импульс каждой

тележки изменился, сумма же осталась неизменной. Это справедливо для замкнутых систем, к которым относят группы тел, которые не взаимодействуют с другими телами, не входящими в эту группу. Отсюда вывод, т.е. закон сохранения импульса: Геометрическая сумма

импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Примером проявления закона сохранения импульса является реактивное движение. Оно наблюдается в природе (движение осьминога) и очень широко в технике (водометный катер, огнестрельное оружие, движение ракет и маневрирование космических кораблей).

6. Механическая работа и мощность. Простые механизмы. КПД простых механизмов

Физическая величина, равная произведению модуля силы на модуль перемещения и косинус угла между ними, называется механической работой (см. рис.).. Работа - величина скалярная. Измеряется работа в джоулях (Дж).

1 Дж - это работа, совершаемая силой в 1 Н на перемещение 1 м. В зависимости от направлений векторов силы и перемещения механическая работа может быть положительной, отрицательной или равной нулю. Например, если векторы и совпадают, то cos00 = 1 и A > 0. Если векторы и направлены в противоположные стороны, то cos1800 = -1 и A < 0. Если же и перпендикулярны, то cos900 = 0 и A = 0. Мощность машины или механизма - это отношение совершенной работы ко времени, в течение которого она

совершена.. Измеряется мощность в ваттах (Вт), 1 Вт = 1 Дж/с. Простые механизмы: наклонная плоскость, рычаг, блок. Их действие подчиняется “золотому правилу механики”: во сколько раз выигрываем в силе, во столько же раз проигрываем в перемещении.

На практике совершаемая с помощью механизма полная работа всегда несколько больше полезной. Часть работы совершается против силы трения в механизме и перемещения его отдельных частей. Например, применяя подвижный блок, приходится дополнительно совершать

работу по поднятию самого блока, веревки и по преодолению силы трения в оси блока. Поэтому для любого механизма полезная работа (AП) всегда меньше, чем полная, затраченная (AЗ). По этой причине КПД = AП/AЗ • 100% любого механизма не может быть больше или хотя бы

равен 100%.

Основные понятия. Механическая энергия

 

Определение: Энергия это мера возможности совершить работу.

Для примера: Сжатая пружина в механических часах обладает энергией достаточной для работы часов в течении суток или более. Батарейки в детской игрушке позволяют ей работать в течении нескольких часов. Раскрутив детский волчок, можно сообщить ему энергию достаточную для вращения в течении некоторого времени.

Энергия и работа связанные между собой понятия, единицей для их измерения служит Джоуль [Дж]. Одно из определений работы из курса физики:

Определение: Работой силы F на прямолинейном пути s, в случае когда направление силы и направление движения совпадают, называется произведение силы на путь.

 

Опуская груз массой 1 кг на высоту s=1 м мы совершаем работу за счет силы тяжести. Сила тяжести G действующая на груз массой 1 кг рассчитывается по формуле:

где, ускорение свободного падения:

масса груза:

 

следовательно работа при опускании груза:

 

Подняв груз массой 1 кг на высоту 1 м мы совершили работу A=9.8 Дж. Если груз отпустить, то под действием силы тяжести опустившись на 1 м груз может совершить работу. Другими словами тело массой 1 поднятое на высоту 1 м обладает энергией (возможностью совершить работу) равной 9.8 Дж. В данном случае речь идет о потенциальной энергии в поле силы тяжести.

Движущиеся тело может столкнувшись с другими телами вызвать их движение (совершить работу). В этом случае речь идет о кинетической энергии. Сжимая (деформируя) пружину, мы сообщаем ей потенциальную энергию деформации (возможность совершить работу при распрямлении).

В повседневной жизни мы наблюдаем непрерывное перетекание энергии из одного вида в другие. Подбросив мяч мы сообщаем ему кинетическую энергию, поднявшись на высоту h он приобретает потенциальную энергию, в момент удара о землю мяч подобно пружине сжимается приобретая потенциальную энергию деформации, и т.д. Все выше перечисленные виды энергии относятся к механической энергии. обратно к содержанию

 

Виды и источники энергии

 

Тепловая энергия

Вторым, после механической, видом энергии, которым человек пользуется на протяжении почти всей своей истории является тепловая энергии. Наглядное представление о тепловой энергии человек получает с пеленок: это горячая пища, тепло систем отопления в современной квартире (если его не отключили), или тепло печки в деревенском доме.

Что же представляет собой эта энергия с точки зрения физики?

Каждое физическое тело состоит из атомов или молекул, в жидкостях и газах они хаотично движутся, чем выше скорость движения, тем большей тепловой энергией обладает тело. В твердом теле подвижность молекул или атомов значительно ниже чем в жидкости, а тем более в газе, молекулы твердого тела только колеблются относительно некоторого среднего положения, чем сильнее эти колебания тем большей тепловой энергией обладает тело. Нагревая тело (сообщая ему тепловую энергию), мы как бы раскачиваем его молекулы и атомы, при достаточно сильном "раскачивании" можно выбить молекулы со своего места и заставить хаотично двигаться. Этот процесс плавления наблюдал каждый, нагревая в руке кусочек льда. Продолжая нагрев мы как бы разгоняем движущиеся молекулы, при достаточном разгоне молекула может выйти за переделы тела. Чем больше нагрев, тем больше молекул могут покинуть тело, в конце концов, передав телу достаточное количество тепловой энергии можно превратить его в газ. Такой процесс испарения протекает кипящем чайнике.

 

Электрическая энергия

Мельчайшей электрически заряженной частицей является электрон, который в ходит в состав любого атома. Для нейтрального атома суммарный отрицательный заряд электронов равен положительному заряду ядра, а заряд всего атома равен нулю. Если удалить несколько электронов, то сумма зарядов электронов и ядра станет больше нуля. Если добавить лишних то атом приобретет отрицательный заряд.

Из физики известно что два противоположно заряженных тела притягиваются. Если на одном теле сосредоточить положительный заряд (удалить с атомов электроны) а на другом отрицательный (добавить электроны), то между ними возникнут силы притяжения, но на больших расстояниях эти силы очень малы. Соединив эти два тела проводником (например металлической проволокой в которой электроны очень подвижны) мы вызовем движение электронов от отрицательно заряженного тела к положительно заряженному телу. Движущиеся электроны могут совершить работу (например накалить нить электролампы) следовательно заряженные тела обладают энергией.

В источнике электрической энергии происходит разделение положительных и отрицательных зарядов замыкая электрическую цепь мы, как бы позволяем разделенным зарядам соединится но при этом заставляем их выполнить необходимую нам работу.

 

Ядерный источник энергии

Эйнштейн установил связь между энергией и массой в своем уравнении:

 

где с = 300 000 000 м/с - скорость света;

таким образом тело человек массой 70 кг содержит в себе энергию

 

такое количество энергии реакторная установка РБМК-1000 выработает только за две тысячи лет работы. Главная проблема научится превращать массу в полезную энергию. Первый шаг для решения этой проблемы человечество сделало освоив военное и мирное использование энергии деления ядер. В самом первом приближении процессы, происходящие в ядерном реакторе, можно описать как непрерывное деление ядер. При этом масса целого ядра до деления больше массы получившихся осколков. Разница составляет примерно 0.1 % массы разделившегося ядра. Разумеется до полного превращения массы в энергию еще очень далеко, но уже такое, не обнаруживаемое обычными весами, изменение массы топлива в реакторе позволяет получать гигантское количество энергии. Изменение массы топлива за год непрерывной работы в реакторе РБМК-1000 составляет приблизительно 0.3 г, но выделившаяся при этом энергия такая же, как при сжигании 3000000 (три миллиона) тон угля.

 

Мощность

В практике, когда мы говорим о источнике энергии нас, как правило, интересует его мощность. Поднять тысячу кирпичей на пятый этаж строящегося дома, можно краном, а можно и с помощью двух рабочих с носилками. И в том, и в другом случае совершенная работа и затраченная энергия одинакова, отличаются только мощности источников энергии.

Определение: Мощность источника энергии (машины), это количество полученной энергии (совершенной работы) в единицу времени.

мощность= энергия(работа)/время

размерность [Дж/сек = Вт]

 

Закон сохранения энергии

Как указывалось выше в окружающем нас мире происходит непрерывное преобразование энергии из одного вида в другую. Подбросив мячик мы вызвали цепочку преобразований механической энергии из одного вида в другой. Прыгающий мячик наглядно иллюстрирует закон сохранения энергии:

Энергия не может исчезать в никуда, или появляться из неоткуда, она может только переходит из одного вида в другой.

Мяч, совершив несколько подскоков, в конце концов останется неподвижным на поверхности. Поскольку первоначально переданная ему механическая энергия расходуется на:

а) преодоление сопротивления воздуха в котором движется мяч (переходит в тепловую энергию воздуха)

б) нагрев мяча и поверхности соударения. (изменение формы всегда сопровождается нагревом, вспомним как нагревается алюминиевая проволока при многократных перегибах) обратно к содержанию

 

Преобразование энергии

Возможности по преобразованию и использованию энергии являются показателем технического развития человечества. Первым, используемым человеком, преобразователем энергии можно считать парус - использование энергии ветра для перемещения по воде, дальнейшие развитее, это использование ветра и воды в ветряных и водяных мельницах. Изобретение и внедрение паровой машины произвело настоящую революцию в технике. Паровые машины на фабриках и заводах резко увеличили производительность труда. Паровозы и теплоходы сделали перевозки по суше и морю более быстрыми и дешевыми. На начальном этапе паровая машина служила для превращения тепловой энергии в механическую энергию вращающегося колеса, от которого с помощью различного рода передач (валы, шкивы, ремни, цепи), энергия передавалась на машины и механизмы.

Широкое внедрение электрических машин, двигателей превращающих электрическую энергию в механическую и генераторов для производства электроэнергии из механической энергии, ознаменовало собой новый скачёк в развитии техники. Появилась возможность передавать энергию на большие расстояния в виде электроэнергии, родилась целая отрасль промышленности энергетика.

В настоящее время создано большое количество приборов предназначенных, как для преобразования электроэнергии в любой вид энергии необходимый для жизнедеятельности человека: электромоторы, электронагреватели, лампы освещения, так и использующие непосредственно электроэнергию: телевизоры, приемники и т.п

 

Молекулярная физика, раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их микроскопического (молекулярного) строения. Задачи М. ф. решаются методами физической статистики, термодинамики и физической кинетики, они связаны с изучением движения и взаимодействия частиц (атомов, молекул, ионов), составляющих физические тела.

 

Понятие жидкого вещества

 

Молекулы в жидкости расположены достаточно близко друг к другу, так что при попытке сжатия жидкости возникают большие силы отталкивания. Отсюда малая сжимаемость жидкостей. Молекулы ведут оседлую жизнь, всреднем она равна 10 -11 с. Жидкости текучи, т.е. не сохраняют свою форму

 

Пусть жидкость занимает часть объема замкнутого сосуда. При любой температуре существует некоторое количество достаточно энергичных молекул внутри жидкости, которые способны разорвать связи с соседними молекулами и вылететь из жидкости. Чем больше температура и при наличии ветра тем быстрее происходит испарение. В то же время в паре, занимающем остальной объем внутри сосуда, всегда найдутся молекулы, которые влетают обратно в жидкость и не могут вылететь обратно. Таким образом, в этом сосуде все время происходят два конкурирующих процесса - испарение и обратная конденсация. Когда число молекул, покидающих жидкость, становится равным числу молекул, возвращающихся обратно, то наступает динамическое равновесие между жидкой и газообразной фазой, говорят, что пар достиг насыщения.

 

По мере увеличения температуры жидкости интенсивность испарения увеличивается, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар.

 

В жидкости всегда присутствуют растворенные газы, которые выделяются на дне и стенках сосуда, а также на взвешенных в жидкости пылинках. Пары жидкости, которые находятся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Перед закипанием чайник почти перестает шуметь. Кибец И. Н., Кибец В.И. Физика. Справочник. - Харьков: Фолио; Ростов н/Д: Феникс, 2003.-185с.

 

Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давления насыщенного пара внутри его немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости. Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше внешнее давление, тем выше температура кипения, и наоборот, уменьшая внешнее давление - понижается температура кипения.

 

У каждой жидкости своя температура кипения, которая зависит от давления насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения соответствующей жидкости, т.к. при меньших температурах давление насыщенного пара становится равным атмосферному.

 

Критическая температура- это температура, при которой исчезают различия в физических свойствах между жидкостью и ее насыщенным паром. Представление о критической температуре ввел Д. И. Менделеев. При критической температуре плотность и давление насыщенного пара становятся максимальными, а плотность жидкости, находящейся в равновесии с паром, - минимальной. Особое значение критической температуры состоит в том, что при температуре выше критической ни при каких давлениях газ нельзя обратить в жидкость. Газ, имеющий температуру ниже критической, представляет собой ненасыщенный пар.

 

Понятие твердого вещества

 

В твердом теле атомы или молекулы могут лишь колебаться вокруг определенных положений равновесия. Поэтому твердые тела сохраняют и форму, и объем. У кристаллических твердых тел центры атомов (молекул) образуют пространственную решетку, в узлах которой находятся атомы вещества. Аморфные твердые тела не обладают жесткой структурой и скорее напоминают застывшие жидкости.

 

Переход вещества из твердого состояния в жидкое называется плавлением. Обратный процесс называется отвердеванием. Температура, при которой вещество плавится (отвердевает), называется температурой плавления (отвердевания) вещества. Температура плавления и отвердевания для данного вещества при одинаковых условиях одинакова. При плавлении (отвердевании) температура вещества не меняется. Однако это не значит, что в процессе плавления к телу не надо подводить энергию. Опыт показывает, что если подача энергии путем теплообмена прекращается, то прекращается и процесс плавления. При плавлении подводимая к телу теплота идет на уменьшение связей между частицами вещества, т.е. на разрушение кристаллической решетки. При этом возрастает энергия взаимодействия между частицами. Небольшая же часть теплоты при плавлении расходуется на совершение работы по изменению объема тела, так как у большинства веществ при плавлении объем возрастает. В процессе плавления к телу подводится некоторое количество теплоты, которая называется теплотой плавления. Теплота плавления пропорциональна массе расплавившегося вещества. Величина (ламбда) называется удельной теплотойплавления вещества. Удельная теплота плавления показывает, какое количество теплоты необходимо, чтобы расплавить единицу массы данного вещества при температуре плавления. Она измеряется в Дж/кг, кДж/кг. Кибец И. Н., Кибец В.И. Физика. Справочник. - Харьков: Фолио; Ростов н/Д: Феникс, 2003.-177с.

 

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

 

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

 

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

 

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

vcp = v

Скорость равномерного прямолинейного движения – это физическая векторная величина, равная отношению перемещения тела за любой промежуток времени к значению этого промежутка t:

 

 

= / t

 

Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени.

 

Перемещение при равномерном прямолинейном движении определяется формулой:

 

= • t

 

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

vx = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

s = vt = x – x0

где x0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

 

 

Уравнение движения, то есть зависимость координаты тела от времени х = х(t), принимает вид:

х = x0 + vt

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:

х = x0 – vt

 

На предыдущих уроках мы познакомились с двумя способами описания прямолинейного равномерного движения – координатным и графическим. Они связаны между собой, так как описывают одно и то же движение. Если задан один из способов описания, например, координатный, то по заданному уравнению можно построить и график зависимости координаты и проекции скорости от времени. Существует и обратная возможность записи уравнения движения по известным графикам зависимости координаты и проекции скорости от времени.

 

Взаимосвязь между различными способами описания прямолинейного равномерного движения можно изобразить на следующей схеме.

 

(Показать на экране с помощью кодоскопа рисунок 1).

 

Движение тела по окружности с постоянной по модулю скоростью — это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.

 

Положение тела на окружности определяется радиусом-вектором, проведенным из центра окружности. Модуль радиуса-вектора равен радиусу окружности R (рис. 1).

 

Частота вращения

 

Частота вращения — это физическая величина, равная числу полных оборотов за единицу времени. Единица частоты вращения — секунда в минус первой степени (с−1, s−1), оборот в секунду. Часто используются такие единицы, как оборот в минуту, оборот в час и т. д.

Равномерное движение по окружности интересно тем, что скорость движущейся точки остается постоянной по величине, изменяясь при этом по направлению. Скорость изменения угла вектора скорости относительно оси координат постоянна. То же самое можно сказать относительно радиуса-вектора, проведенного из оси вращения к вращающейся точке. Эта скорость называется угловой скоростью.

Равномерное движение по окружности характеризуется несколькими взаимосвязанными величинами:

Частота вращения. Обычно обозначается латинской буквой "n" или греческой буквой "?". Эта величина говорит о том, сколько оборотов в единицу времени делает тело. Например, сколько оборотов в секунду, или в минуту, или в час и т.д.

Период вращения чаще всего обозначается латинской буквой "T". Это время одного оборота вокруг оси.

Линейная скорость вращения, обозначается обычно латинской буквой "v". Это скорость, с которой тело движется по окружности. Вектор линейной скорости направлен по касательной к окружности вращения. Он перпендикулярен радиусу окружности вращения.

Угловая скорость вращения обычно обозначается греческой буквой "?". Это величина, показывающая, на какой угол поворачивается радиус-вектор (или вектор скорости) за единицу времени. Обычно измеряется в радианах в секунду.

Формулы для решения:

Частота вращения.

Где N - количество оборотов, t - время, за которое они совершились.

Центростремительное ускорение — часть полного ускорения точки, обусловленного кривизной траектории и скоростью движения по ней материальной точки. Такое ускорение направлено к центру кривизны траектории, чем и обусловлен термин. Формально и по существу термин центростремительное ускорение в целом совпадает с термином нормальное ускорение, различаясь скорее лишь стилистически (иногда исторически)[1].

Особенно часто о центростремительном ускорении говорят, когда речь идет о равномерном движении по окружности или при движения, более или менее приближенном к этому частному случаю.

Нормальное ускорение, составляющая ускорения точки при криволинейном движении, направленная по главной нормали к траектории в сторону центра кривизны; Н. у. называется также центростремительным ускорением. Численно Н. у. равно v2/r, где v — скорость точки, r — радиус кривизны траектории. При движении по окружности Н. у. может вычисляться по формуле rw2, где r — радиус окружности, w— угловая скорость вращения этого радиуса. В случае прямолинейного движения Н. у. равно нулю.

ИДЕА́ЛЬНЫЙ ГАЗ, теоретическая модель газа; в которой пренебрегают размерами частиц газа, не учитывают силы взаимодействия между частицами газа, предполагая, что средняя кинетическая энергия частиц много больше энергии их взаимодействия, и считают, что столкновения частиц газа между собой и со стенками сосуда абсолютно упругие.

Существуют модель классического идеального газа, свойства которого описываются законами классической физики, и модель квантового идеального газа, подчиняющегося законам квантовой механики. Обе модели идеального газа справедливы для реальных классических и квантовых газов при достаточно высоких температурах и разряжениях.

Атомы и молекулы, взаимодействую друг с другом, образуют разнообразные вещества (системы). Если число частиц невелико (десятки, сотни), то мы имеем микросистему. Если число частиц системы во много раз больше (миллионы и более), то такую систему называют макросистемой. Например, газ, состоящий из очень большого числа молекул — это макросистема. Большое число частиц системы приводит к появлению у нее новых свойств, которыми отдельные частицы не обладают. Например, давление газа есть результат непрерывного действия всех молекул на стенки сосуда, хотя не каждая молекула сталкивается со стенками. Для описания состояния макросистемы вводят параметры, которые называются параметрами состояния. Различают микропараметры и макропараметры состояния.

Микропараметры — это параметры, характеризующие отдельную частицу. Например, масса молекулы, ее скорость, энергия.

Макропараметры — это параметры, характеризующие систему в целом. Например, объем V, давление p, средняя скорость молекул, температура T, концентрация n и т.д. Значения этих параметров могут быть установлены с помощью измерительных приборов.

Объем газа V — это объем сосуда, в котором газ находится. В Си измеряется в м3. Часто используется несистемная единица измерения 1 литр: 1 л = 10-3 м3.

Давление р — скалярная физическая величина, равная отношению силы F к значению площади S площадки, на которую эта сила действует:. Газ оказывает давление вследствие столкновений молекул со стенками сосуда. В Си единица давления 1 Н/м2 = 1 Па (Паскаль). Внесистемные единицы измерения — 1 мм.рт.ст и 1 атмосфера. Нормальное давление равно одной физической атмосфере. 1 физическая атмосфера = 1 атм = 760 мм.рт.ст, 1 техническая атмосфера = 1 ат = 736 мм.рт.ст. 1 мм.рт.ст. = 133Па.

Более строгое определение давления: давление р — скалярная физическая величина, равная отношению проекции силы на направление нормали к площадке, на которую сила действует, к значению площади этой площади.

Концентрация молекул n — это число молекул N в единице объема, т.е.. Измеряется в 1/м3 = м–3.

Температура — скалярная физическая величина, характеризующий степень нагретости тела.

По шкале Цельсия температура обозначается буквой t, измеряется в градусах Цельсия (ºС). За 1 ºС принята одна сотая промежутка от температуры плавления льда (0 ºС) до температуры кипения воды (100 ºС).

Абсолютная температурная шкала — шкала температур, в которой за начало отсчета принят абсолютный нуль. Температура здесь обозначается буквой T, измеряется в кельвинах (К). За единицу измерения в этой шкале принят один градус Цельсия, т.е. изменение на один кельвин (1 К) равно изменению на один градус Цельсия.

T = (t + 273) К или t = (T – 273) ºС,

где T — абсолютная термодинамическая температура (К); t — температура по шкале Цельсия (ºС).

Идеальный газ

Рассмотрим свойства газов на основе МКТ. Для этого введем физическую модель идеального газа, в которой приняты следующие допущения:

1) размеры молекул малы по сравнению со средним расстоянием между ними; молекулы можно принимать за материальные точки;

2) силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях;

3) молекулы сталкиваются друг с другом как абсолютно упругие шары, движение которых описывается законами механики.

 

Таким образом, идеальным называется газ, в котором можно пренебречь собственным объемом молекул и межмолекулярным взаимодействием (кроме столкновений).

При небольших давлениях и не очень низких температурах реальные газы близки к идеальному газу. Например, водород, кислород при нормальных условиях в атмосфере можно рассматривать как идеальные газы. При высоких давлениях молекулы газа находятся так близко, что между ними возникают заметные силы взаимодействия. Пренебречь их собственным объемом нельзя, и газ уже не является идеальным.

Механическое движение – это изменение положения тела в пространстве относительно других тел. Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся. В этом проявляется относительность механического движения.

 

Все тела во Вселенной движутся, поэтому не существует тел, которые находятся в абсолютном покое. По той же причине определить движется тело или нет, можно только относительно какого-либо другого тела.

Например, автомобиль движется по дороге. Дорога находится на планете Земля. Дорога неподвижна. Поэтому можно измерить скорость автомобиля относительно неподвижной дороги. Но дорога неподвижна относительно Земли. Однако сама Земля вращается вокруг Солнца. Следовательно, дорога вместе с автомобилем также вращается вокруг Солнца. Следовательно, автомобиль совершает не только поступательное движение, но и вращательное (относительно Солнца). А вот относительно Земли автомобиль совершает только поступательное движение. В этом проявляется относительность механического движения.

 

Относительность механического движения – это зависимость тра



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 2304; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.178.179 (0.018 с.)