Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теорема об изменении кинетической энергии механической системы.Содержание книги
Поиск на нашем сайте
умножим первое уравнение на а второе на и в результате получим: ; ; T=T1+T2-кинетическая энергия механической системы. - теорема об изменении кинетической энергии. Изменение кинетичекой энергии в единицу времени механической системы обусловлено работой совершающей в единицу времени внешними и внутренними силами. T1+T2)= ; ; воспользуемся тем фактом,что силовые поля являя потенциальными полями, это значит что для всех полей выполн след соотнош: ; ; ; ( = , -где - энергия взаимодействия механической системы с внешним полем где ; ; ; ; где - потенциальная энергия взаимод двух точек; - потенциальная энергия системы взаимод с внешним полем. ; W-полная энергия. W=T1+T2+T3+ ; W= ; W=T+ ; - закон сохранения энергии. Следствие 1: если внешнее поле отсутствует, то полная энергия будет состоять из: W=T+ , при Следствие 2: если центр масс выразить через радиус: ; ; ; W= - полная энергия механической системы. - кинетическая энергия механической системы, как целая, когда определяется движение центра масс механической системы.; - приведенная масса. Кинетическая энергия механической системы, как материальная точка с приведенной массой и относительной скоростью - потенциальная энергия. 12. Описание упругих колебаний материальной точки на основании 2-го закона Ньютона и закона сохранения энергии. ; ; механ.Ньютона ; ; ; ; ; ; ; ; ; ; ; ; ; . ; ; ; ; -полная энергия; = - уравнение движения; ; ; y= dy=dz; ; C =-2 ; ; ; ; 13.Связи. Уравнения связей. -уравнение связи; Связь – это совокупность тел огранич.движение определенного тела. Связи кот. огранич.движение тел описываются аналитическими ур-ями кот. наз. ур-ями связи. Рассмотрим движ. Одной мат.т.движ. кот.ограничена связеми. f( =0; где t-время, ( =0, ( =0, ( =0, ( =0; f(x)=0, f(x)=x-l; уравнение плоскости является связью -функции связи Для круга Каждая определенная связь ограниченная движением мат.точки уменьшает число степеней свободы. стационарные связи – это такие связи ф-ии кот. явно не зависят от времени, в противном случае если ф-ии зависят от времени то она стационарная. В механ.использ. голономные и неголономные связи. Голономн. наз.связи кот. можно определить аналитич.ур-ями и эти ур-ия описываются опред. ур-ями поверхностей в противном случае связь явл. неголономной. силы кот.обусловленны действия связи наз. пассивными или реактивными силими. Активными наз.силы кот вызывают ускорение мат. точек. Если мат.система состоит из N мат.точек 3N-P= r; Определение числа механ.системы с учетом связи огранич.движ.мех.системы. Виды перемещений: Действительные перемещения-это перемещение мат.точки под действием активных и пассивных сил. Возможные- это перемещ.кот.огран.связями действующ.на мат. точку или тело. Виртуальные – это вооброжаемые перемещ. кот. обусловл.действием активных и пассивных сил. 14.Элементы дифференцирования и варьирования в теоретической мех. ; dz=vdt; z=z(t); ; Если в данный фиксированный момент времени переход от одной траектории к другой: то эта операция перехода от одной траектории к другой близко расположенной относительно основной траектории наз. варьированием. -варьирование преременных. С помощью операции варьирования определяется виртуальное варьирование. Если речь идет о вычислении вариации ф-ии зависящей от вариации ; ; ; ( =0, ; ( = ; ( = ; ; = ; = 15. Метод неопределенных множителей Лагранжа. Рассм. Мех. состоящую из N мат.т.на это на мех.систему наложено p связей(идеальных). r=3N-p Связи описываются ур-ями связи ; все связи идеальны . Вычислим вариации ф-ции : ; умножим ур-ние на и сложим все ур-ия: ; ; Если бы число степеней свободы мех. системы 3N то каждая было бы независимым и тогда выражение в квадратных скобках можно было бы прировнять к нулю, но число степеней свободы меньше 3N и равно 3N-p где р – число ур-ний связи.поэтому мы такого утверждения сделать не можем т.к. неопределенные множители то мы подберем их таким образом что бы в каждом слогаемым выражение в квадратных скобках=0; из явного вида ф-лы связь реакции связи с ур-ями (функциями связи). ; - ур-ние Лагранжа 1-го рода. 16. Ур-е Лагранжа 1-го рода. Рассм. мех.сис-му, состоящ. из N материальн.точек. На эту мех.сис-му наложено р-связей идеальных. Число степеней свободы r = 3N-p. (8.1) a=1,2…p. Вычислим теперь вариацию функций ур-я (8.1): d Умножим теперь кажд.ур-е (8.3) на множитель и сложим эти ур-я,тогда получ.: Если бы число степеней свободы мех.сис-мы было 3N, то каждая d было бы независ. и тогда выраж-е в [ ] скобках можно было бы приравнять к 0, но число степеней свободы меньше 3N и равно 3N-p, где р- число ур-й связи, поэтому такого утверждения мы сделать не можем, однако, поскольку неопред.множители, то мы подберем их т.образом, чтобы в каждом слагаемом (8.5) выр-е в [ ] равнялись нулю. След-но из нашего утверждения следует, что Из явного вида ф-лы (8.6) следует связь реакции связи с ур-ями (ф-циями) связи ур-е Д*аламбера. Если учтем ур-е (8.6), то получ. Это и есть ур-е Лагранжа 1-го рода.
Общее ур-е механики. реакция связи, наз.идеальной для одной матер.точки,если выполн.ур-е: ( Принцип Д*аламбера: При движ-ии матер.точки сил действующих на матер.точку =0 = -m Если ур-е (7.9) скалярно умножим на d , то ( =0 (7.10), это ур-е наз.общим ур-ем механики для одной матер.точки. Для сис-мы состоящ.из n матер.точек принцип Д*аламбера будет записан так: n=1,2… Если умножим (7.11) скалярно на d , а затем проссумируем.то получим: Если связь идеальна, то это ур-е запиш. В виде:
Общее ур-е механики
|
||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 356; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.126.199 (0.007 с.) |