Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Три основных вида передачи тепла

Поиск

Существуют три основных вида теплопередачи: теплопроводность, конвекция и

Лучистый теплообмен.

Теплопроводность. Если внутри тела имеется разность температур, то

тепловая энергия переходит от более горячей его части к более холодной. Такой

вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул,

называется теплопроводностью; при достаточно высоких температурах в твердых

телах его можно наблюдать визуально. Так, при нагревании стального стержня с

одного конца в пламени газовой горелки тепловая энергия передается по стержню,

и на некоторое расстояние от нагреваемого конца распространяется свечение (с

удалением от места нагрева все менее интенсивное).

Интенсивность теплопередачи за счет теплопроводности зависит от градиента

температуры, т.е. отношения DТ/Dx разности температур на концах

стержня к расстоянию между ними. Она зависит также от площади поперечного

сечения стержня (в м2) и коэффициента теплопроводности материала [в

соответствующих единицах Вт/(мDК)]. Соотношение между этими величинами было

выведено французским математиком Ж.Фурье и имеет следующий вид:

 

где q – тепловой поток, k – коэффициент теплопроводности, а

A – площадь поперечного сечения. Это соотношение называется законом

теплопроводности Фурье; знак «минус» в нем указывает на то, что теплота

передается в направлении, обратном градиенту температуры.

Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из

величин – коэффициент теплопроводности, площадь или градиент температуры. Для

здания в зимних условиях последние величины практически постоянны, а поэтому

для поддержания в помещении нужной температуры остается уменьшать

теплопроводность стен, т.е. улучшать их теплоизоляцию.

В таблице представлены коэффициенты теплопроводности некоторых веществ и

материалов. Из таблицы видно, что одни металлы проводят тепло гораздо лучше

других, но все они являются значительно лучшими проводниками тепла, чем

воздух и пористые материалы.

Теплопроводность металлов обусловлена колебаниями кристаллической решетки и

движением большого числа свободных электронов (называемых иногда электронным

газом). Движение электронов ответственно и за электропроводность металлов, а

потому неудивительно, что хорошие проводники тепла (например, серебро или

медь) являются также хорошими проводниками электричества.

Тепловое и электрическое сопротивление многих веществ резко уменьшается при

понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление,

называемое сверхпроводимостью, используется для повышения эффективности

работы многих устройств – от приборов микроэлектроники до линий

электропередачи и больших электромагнитов.

Конвекция. Как мы уже говорили, при подводе тепла к жидкости или газу

увеличивается интенсивность движения молекул, а вследствие этого повышается

давление. Если жидкость или газ не ограничены в объеме, то они расширяются;

локальная плотность жидкости (газа) становится меньше, и благодаря

выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно

поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное

явление называется конвекцией. Чтобы не расходовать тепло отопительной системы

впустую, нужно пользоваться современными обогревателями, обеспечивающими

принудительную циркуляцию воздуха.

Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от

начальной скорости движения молекул, плотности, вязкости, теплопроводности и

теплоемкости и среды; очень важны также размер и форма нагревателя.

Соотношение между соответствующими величинами подчиняется закону Ньютона

q = hA (TW  T),

где q – тепловой поток (измеряемый в ваттах), A – площадь

поверхности источника тепла (в м2), TW и T

 – температуры источника и его окружения (в кельвинах).

Коэффициент конвективного теплопереноса h зависит от свойств среды,

начальной скорости ее молекул, а также от формы источника тепла, и измеряется в

единицах Вт/(м2хК).

Величина h неодинакова для случаев, когда воздух вокруг нагревателя

неподвижен (свободная конвекция) и когда тот же нагреватель находится в

воздушном потоке (вынужденная конвекция). В простых случаях течения жидкости по

трубе или обтекания плоской поверхности коэффициент h можно рассчитать

теоретически. Однако найти аналитическое решение задачи о конвекции для

турбулентного течения среды пока не удается. Турбулентность – это сложное

движение жидкости (газа), хаотичное в масштабах, существенно превышающих

молекулярные.

Если нагретое (или, наоборот, холодное) тело поместить в неподвижную среду

или в поток, то вокруг него образуются конвективные токи и пограничный слой.

Температура, давление и скорость движения молекул в этом слое играют важную

роль при определении коэффициента конвективного теплопереноса.

Конвекцию необходимо учитывать при проектировании теплообменников, систем

кондиционирования воздуха, высокоскоростных летательных аппаратов и многих

других устройств. Во всех подобных системах одновременно с конвекцией имеет

место теплопроводность, причем как между твердыми телами, так и в окружающей

их среде. При повышенных температурах существенную роль может играть и

лучистый теплообмен.

Лучистый теплообмен. Третий вид теплопередачи – лучистый теплообмен –

отличается от теплопроводности и конвекции тем, что теплота в этом случае может

передаваться через вакуум. Сходство же его с другими способами передачи тепла в

том, что он тоже обусловлен разностью температур. Тепловое излучение – это один

из видов электромагнитного излучения. Другие его виды – радиоволновое,

ультрафиолетовое и гамма-излучения – возникают в отсутствие разности

температур.

На рис. 8 представлена зависимость энергии теплового (инфракрасного)

излучения от длины волны. Тепловое излучение может сопровождаться испусканием

видимого света, но его энергия мала по сравнению с энергией излучения

невидимой части спектра.

Интенсивность теплопередачи путем теплопроводности и конвекции

пропорциональна температуре, а лучистый тепловой поток пропорционален

четвертой степени температуры и подчиняется закону Стефана – Больцмана

где, как и ранее, q – тепловой поток (в джоулях в секунду, т.е. в Вт),

A – площадь поверхности излучающего тела (в м2), а T

1 и T2 – температуры (в кельвинах) излучающего тела и

окружения, поглощающего это излучение. Коэффициент s называется

постоянной Стефана – Больцмана и равен (5,66961х0,00096)х10

–8 Вт/(м2 DК4).

Представленный закон теплового излучения справедлив лишь для идеального

излучателя – так называемого абсолютно черного тела. Ни одно реальное тело

таковым не является, хотя плоская черная поверхность по своим свойствам

приближается к абсолютно черному телу. Светлые же поверхности излучают

сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных

«серых» тел, в правую часть выражения, описывающего закон Стефана –

Больцмана, вводят коэффициент, меньший единицы, называемый излучательной

способностью. Для плоской черной поверхности этот коэффициент может достигать

0,98, а для полированного металлического зеркала не превышает 0,05.

Соответственно лучепоглощательная способность высока для черного тела и низка

для зеркального.

Жилые и офисные помещения часто обогревают небольшими электрическими

теплоизлучателями; красноватое свечение их спиралей – это видимое тепловое

излучение, близкое к границе инфракрасной части спектра. Помещение же

обогревается теплотой, которую несет в основном невидимая, инфракрасная часть

излучения. В приборах ночного видения применяются источник теплового

излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в

темноте.

Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на

расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год

за годом станциями, расположенными во многих точках земного шара, составляет

примерно 1,37 Вт/м2. Солнечная энергия – источник жизни на Земле.

Ведутся поиски способов наиболее эффективного ее использования. Созданы

солнечные батареи, позволяющие обогревать дома и получать электроэнергию для

бытовых нужд.

 

Силы в Природе

 

Несмотря на разнообразие сил, имеется всего четыре типа взаимодействий: гравитационное, электромагнитное, сильное и слабое.

 

Гравитационные силы заметно проявляются в космических масштабах. Одним из проявлений гравитационных сил является свободное падение тел. Земля сообщает всем телам одно и то же ускорение, которое называют ускорением свободного падения g. Оно незначительно меняется в зависимости от географической широты. На широте Москвы оно равно 9,8 м/с2.

 

Электромагнитные силы действуют между частицами, имеющими электрические заряды. Сильные и слабые взаимодействия проявляются внутри атомных ядер и в ядерных превращениях.

 

Гравитационное взаимодействие существует между всеми телами, обладающими массами. Закон всемирного тяготения, открытый Ньютоном, гласит:

 

Сила взаимного притяжения двух тел, которые могут быть принятыми за материальные точки, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними:

 

 

Коэффициент пропорциональности у называют гравитационной постоянной. Она равна 6,67 • 10-11 Н•м2/кг2.

 

Если на тело действует лишь гравитационная сила со стороны Земли, то она равна mg. Это и есть сила тяжести G (без учета вращения Земли). Сила тяжести действует на все тела, находящиеся на Земле, вне зависимости от их движения.

 

При движении тела с ускорением свободного падения (или даже с меньшим ускорением, направленным вниз) наблюдается явление полной или частичной невесомости.

 

Полная невесомость - отсутствие давления на подставку или на подвес. Вес - сила давления тела на горизонтальную опору или сила растяжения нити со стороны подвешенного к ней тела, которая возникает в связи с гравитационным притяжением данного тела к Земле.

 

Силы притяжения между телами неуничтожимы, тогда как вес тела может исчезнуть. Так, в спутнике, который двигается с первой космической скоростью вокруг Земли, вес отсутствует так же, как в лифте, падающем с ускорением g.

 

Примером электромагнитных сил являются силы трения и упругости. Различают силы трения скольжения и силы трения качения. Сила трения скольжения намного больше силы трения качения.

 

Сила трения зависит в некотором интервале от приложенной силы, которая стремится сдвинуть одно тело относительно другого. Прикладывая различную по величине силу, увидим, что небольшие силы не могут сдвинуть тело. При этом возникает компенсирующая сила трения покоя.

 

При отсутствии сил, сдвигающих тело, сила трения покоя равна нулю. Наибольшее значение сила трения покоя приобретает в момент, когда одно тело начинает двигаться относительно другого. В этом случае сила трения покоя становится равной силе трения скольжения:

 

 

где n - коэффициент трения, N - сила нормального (перпендикулярного) давления. Коэффициент трения зависит от вещества трущихся поверхностей и их шероховатости.

Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело. Силы трения, как и упругие силы, имеют электромагнитную природу. Они возникают вследствие взаимодействия между атомами и молекулами соприкасающихся тел. Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Они всегда направлены по касательной к соприкасающимся поверхностям. Сухое трение, возникающее при относительном покое тел, называют трением покоя. Сила трения покоя всегда равна по величине внешней силе и направлена в противоположную сторону (рис. 1.13.1).

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости. Простейшим видом деформации является деформация растяжения или сжатия

При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:Fx = Fупр = –kx.

Это соотношение выражает экспериментально установленный закон Гука. Коэффициент k называется жесткостью тела. В системе СИ жесткость измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение ε = x / l называется относительной деформацией, а отношение σ = F / S = –Fупр / S, где S – площадь поперечного сечения деформированного тела, называется напряжением. Тогда закон Гука можно сформулировать так: относительная деформация ε пропорциональна напряжению σ:

Коэффициент E в этой формуле называется модулем Юнга. Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Для различных материалов модуль Юнга меняется в широких пределах. Для стали, например, E ≈ 2·1011 Н/м2, а для резины E ≈ 2·106 Н/м2, то есть на пять порядков меньше. Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Количество теплоты — это мера изменения внутренней энергии, которую тело получает (или отдает) в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны энергии. Они не характеризуют само состояние системы, а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю). Количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Термодинамика. Термодинамика — это теория тепловых явлений, в которой не учитывается атомно-молекулярное строение тел. Для описания явлений в термодинамике используются понятия «термодинамическая система» и «термодинамический процесс». Совокупность физических тел, изолированных от взаимодействия с другими телами, называют изолированной термодинамической системой.

Любое изменение, происходящее в термодинамической системе, называется термодинамическим процессом.

Тело как система из составляющих его частиц обладает внутренней энергией. С позиций молекулярно-кинетической теории внутренняя энергия — это сумма потенциальной энергии взаимодействия частиц, составляющих тело, и кинетической энергии их беспорядочного теплового движения.

Кинетическая энергия беспорядочного движения частиц пропорциональна температуре T, потенциальная энергия взаимодействия зависит от расстояний между частицами, т. е. от объема V тела. Поэтому в термодинамике внутренняя энергия тела определяется как функция его макроскопических параметров, например температуры T и его объема V:

.закон сохранения и превращения энергии. В термодинамике закон сохранения энергии формулируется так: при любых процессах в изолированной термодинамической системе внутренняя энергия остается неизменной:

 

или. (31.1)

Внутренняя энергия идеального газа. Вычислим внутреннюю энергию идеального газа. Если потенциальная энергия взаимодействия молекул равна нулю, внутренняя энергия идеального газа равна сумме кинетических энергий хаотического теплового движения всех его молекул:

 

. (31.2)Внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре. Следовательно, при изменении температуры идеального газа обязательно изменяется его внутренняя энергия; если температура остается постоянной, то внутренняя энергия идеального газа не изменяется.

 

Используя уравнение состояния идеального газа (26.7) и уравнение (31.2), можно получить еще одно выражение для вычисления внутренней энергии идеального одноатомного газа:

 

. (31.3)

 



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 1166; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.44.115 (0.009 с.)