Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные виды дедуктивных рассуждений, выраженные ЯКЛВ

Поиск

В ходе аргументационного процесса следует осознанно использовать разнообразные формы дедуктивных рассуждений, в связи с чем рассмотрим в парадигме КЛВ основные классы умозаключений, акцентируя внимание на их корректных разновидностях.

В КЛВ на основе прямых правил вывода строятся следующие основные классы наиболее часто используемых в практике аргументации умозаключений:

 

1) непосредственные условные умозаключения;

2) чисто условные (чисто гипотетические) умозаключения;

3) условно-категорические умозаключения;

4) чисто разделительные умозаключения;

5) разделительно-категорические умозаключения;

6) разделительно-условные (лемматические) умозаключения.

 

Условными называются умозаключения, в логической структуре которых в качестве посылок содержатся одно или несколько импликативных суждений. Поскольку в умозаключении может присутствовать одна или несколько посылок, то будем, как и в силлогистике, различать непосредственные условные и опосредованные условные умозаключения.

Непосредственным условным умозаключением являются такие умозаключения, в которых из посылки — условного суждения — получают новое условное суждение — заключение.

В свою очередь, антецеденты непосредственного условного умозаключения могут быть как элементарными высказываниями, так и конъюнкцией элементарных высказываний, в связи с чем среди непосредмтвенных условных умозаключений принято различать:

1) простую контрапозицию условного суждения: в таком случае антецедент посылки — элементарное высказывание (см.: закон контрапозиции);

v Пример

«Если какой-либо человек является гражданином России, то он имеет российские гражданские права, поэтому если человек не имеет российских гражданских прав, то он не является гражданином России».

Формула рассмотренного суждения:

(aÉb)É(ØbÉØa).

 

Или рассуждение: «Поскольку киты не являются рыбами, то не является рыбой касатка. Значит, если касатка — рыба, то рыбами следует признать китов». Его формула (см.: закон обратной контрапозиции):

 

(ØaÉØb)É(bÉa).

 

Перечислим все возможные (как уже снабжённые примерами, так и те, примеры которых следует подобрать самостоятельно) схемы достоверных рассуждений по типу простой контрапозиции условного суждения:

 

1) (AÉB)É(ØBÉØA);

2) (ØAÉØB)É(BÉA);

3) (AÉØB)É(BÉØA);

4) (ØAÉB)É(ØBÉA);

 

2) сложную контрапозицию условного суждения, когда антецедент либо консеквент посылки является конъюнкцией двух элементарных высказываний, а антецедентом либо консеквентом заключения становится конъюнкция одного из этих элементарных высказываний со взятым с отрицанием консеквентом либо антецедентом посылки.

v Пример

«Если вы внимательно следите за рассуждением и понимаете его структуру, то можете определиться с его логической состоятельностью. Поэтому, если вы внимательно следили за рассуждением, но не в состоянии определиться с его логической состоятельностью, то вы не понимаете его структуру». Формула рассмотренного суждения (см.: закон сложной контрапозиции):

(aÙb)Éс) É((аÙØс)ÉØb).

 

Или: «Если вы внимательно следите за рассуждением и понимаете его структуру, то можете определиться с его логической состоятельностью. Поэтому, если вы понимаете логическую структуру рассуждения, но не в состоянии определиться с его логической состоятельностью, то вы невнимательно следили за рассуждением». Формула рассмотренного суждения:

(aÙb)Éс)É((bÙØс)ÉØa).

 

Логическая форма рассмотренных разновидностей сложной контрапозии условного суждения может быть выражена схемами:

((АÙB)ÉC) É((AÙØC)ÉØB);

((AÙB)ÉC)É((BÙØC)ÉØA).

 

Опосредованным условным умозаключением является, например, чисто условное, т. е. такое опосредованное умозаключение, в котором посылки являются условными суждениями.

v Пример

Если предмет является столицей, то он является городом; если предмет является городом, то он является населённым пунктом; если предмет является населённым пунктом, то он является имеющим название; значит, если предмет является столицей, то он является имеющим название. Первая посылка данного умозаключения — импликативное (условное) суждение, а именно: «Если предмет является столицей, то он является городом» (его формула (aÉb)). Вторая посылка — импликативное суждение: «Если предмет является городом, то он является населённым пунктом» (его формула (bÉc)). Третья посылка — импликативное суждение: «Если предмет является населённым пунктом, то он является имеющим название» (его формула (cÉd)). Формула импликативного суждения-заключения ((aÉd)). Общая формула умозаключения рассмотренной логической формы

((aÉb)Ù(bÉc)Ù(сÉd))É(aÉd).

 

Другая разновидность чисто-условного умозаключения имеет, например, следующий вид: «Если будет хорошее настроение, то мы будем заниматься английским, но даже если не будет такого настроения, мы всё равно будем заниматься английским; значит, мы будем заниматься английским». Его формула

 

((aÉb)Ù(ØaÉb))Éb.

Методом таблиц истинности докажем, что данная формула действительно является законом классической логики высказываний (рис. 24):

 

a b Øa ((a É b) Ù (Øa É b)) Ù b
и и л и и и и  
и л л л л и и  
л и и и и и и  
л л и и л л и  

 

Рис. 24

 

Простейшим видом условных умозаключений, содержащих помимо импликативных суждений-посылок не импликативные суждения-посылки, является условно-категорическое умозаключение.

Условно-категорическое умозаключение — это такое дедуктивное умозаключение, в котором одна из посылок — условное суждение, а другая — простое категорическое суждение.

Поскольку в логической структуре такого умозаключения простое категорическое суждение выступает не только в роли отдельной посылки, но и элемента логической структуры импликативного суждения-посылки, то оно может быть либо антецедентом, либо консеквентом, либо отрицанием того или другого.

В силу различий качества и местоположения простого категорического суждения в логической структуре импликативной посылки существуют четыре модуса условно-категорического умозаключения, подразделяющиеся по основанию наличия или отсутствия логического следования на модусы правильные и неправильные.

Правильными являются утверждающий и исключающий модусы условно-категорического умозаключения.

Первый из них принято называть modus ponens, что означает «утверждающий способ рассуждения». В таком случае умозаключение строится от утверждения основания к утверждению следствия.

v Пример

Если по металлу пропускают электрический ток, то он нагревается; по металлу пропускают электрический ток, значит, металл нагревается. Формула рассматриваемого в качестве примера сложного высказывания

((aÉb)Ùa)Éb.

 

Это одна из формулировок закона исключения импликации в классической логике высказываний выражается схемой:

((АÉВ)ÙА)ÉВ.

 

Второй правильный модус условно-категорического умозаключения принято называть modus tollens, что означает «отрицающий способ рассуждения». В таком случае умозаключение строится от отрицания следствия к отрицанию основания.

v Пример

Если химическое вещество является металлом, то оно электропроводно, но данное химическое вещество не проводит электрического тока, значит, оно не является металлом. Или – Поскольку когда кто-либо является адвокатом, то он является юристом, а Иванов юристом не является, значит, у него нет статуса адвоката. Формула данных высказываний:

((aÉb)ÙØb)ÉØa.

 

Это формулировка закона исключения импликации также выражаемая схемой:

((АÉВ)ÙØВ)ÉØА.

 

Не являются правильными следующие, выраженные схемами, способы условно-категорических рассуждений:

 

1) ((АÉВ)ÙВ)ÉА;

2) ((АÉВ)ÙØА)ÉØВ.

 

Теперь рассмотрим тип разделительных умозаключений, т. е. содержащих в качестве одной или нескольких посылок дизъюнктивные суждения.

Поскольку в разделительном умозаключении дизъюнктивными суждениями могут быть представлены все или только некоторые посылки, различают:

 

чисто разделительные умозаключения;

разделительно-категорические умозаключения;

разделительно-условные умозаключения.

 

Чисто разделительным называется умозаключение, все посылки которого являются дизъюнктивными суждениями.

v Пример

Всякое сравнимое суждение является или совместимым, или несовместимым.

Всякое несовместимое суждение является или противоречащим, или противоположным.

_____________________________________________________________________________________________________________

Всякое сравнимое суждение является или совместимым, или противоречащим, или противоположным.

 

В парадигме классической логики высказываний данное рассуждение можно трансформировать в следующую цепочку:

«Суждение является сравнимым тогда и только тогда, когда оно либо совместимое, либо несовместимое, и суждение является несовместимым тогда и только тогда, когда это либо противоречащее, либо противоположное суждение, значит, если суждение является сравнимым, то это равнозначно, что оно является или совместимым, или противоречащим, или противоположным».

 

С учётом произведённой трансформации формула рассматриваемого высказывания выглядит следующим образом:

 

((aº(b Ú Øb)Ù(Øbº(c Ú d))É((аº(b Ú (c Ú d)),

 

где а — «Суждение является сравнимым», b — «Суждение является совместимым», Øb — «Суждение не является совместимым», с — «Суждение является противоречащим», d — «Cуждение является противоположным».

Докажем методом таблиц истинности, что эта формула также является законом классической логики высказываний (рис. 25):

 

a b Øb c d ((a º (b Ú Øb) Ù (Øb º (c Ú d)) É ((а º (b Ú (c Ú d))
и и л и и и и и и л и и и л
и и л и л и и л л и и л л и
и и л л и и и л л и и л л и
и и л л л и и и и л и и и л
и л и и и и и л л л и л л л
и л и и л и и и и и и и и и
и л и л и и и и и и и и и и
и л и л л и и л л л и л л л
л и л и и л и л и л и л и л
л и л и л л и л л и и и л и
л и л л и л и л л и и и л и
л и л л л л и л и л и л и л
л л и и и л и л л л и и л л
л л и и л л и л и и и л и и
л л и л и л и л и и и л и и
л л и л л л и л л л и и л л

 

Рис. 25

 

Следующая разновидность разделительного умозаключения — это умозаключение разделительно-категорическое, в котором одна посылка — разделительное суждение, а другая — простое категорическое суждение. Такое умозаключение имеет два правильных модуса.

Первым правильным модусом является «отрицающе-утверждающий способ рассуждения» (modus tollendo ponens), в котором вторая посылка — это взятое с отрицанием простое категорическое суждение, являющееся в логической структуре первой посылки одним из суждений-дизъюнктов.

Таким образом, осуществляется переход от отрицания одного (нескольких) из членов дизъюнктивной посылки к утверждению другого его члена, что может быть выражено в случае двухчленной дизъюнкции схемами:

 

1) ((АÚВ)ÙØА)ÉВ,

2) ((АÚВ)ÙØВ)ÉА.

v Пример

Так как мир иллюзий является либо действительно существующим, либо существующим мнимо и он не является действительно существующим, следовательно, мир иллюзий является существующим мнимо.

Или: «Поскольку все части речи делятся на знаменательные и служебные и рассматриваемая часть речи не является служебной, значит, рассматриваемая часть речи является знаменательной». В дальнейшем, в рамках натурального исчисления высказываний данная схема будет означать одно из правил вывода: правило исключения дизъюнкции.

 

Логический союз «или» в modus tollendo ponens обеспечивает логическое следование при его использовании в любом из возможных смыслов (как в смысле строгой, так и нестрогой дизъюнкции), поэтому законами классической логики высказываний являются четыре формулы данного модуса:

 

1) ((aÚb)ÙØa)Éb;

2) ((aÚb)ÙØb)Éa;

3) ((a Ú b)ÙØb)Éa;

4) ((a Ú b)ÙØb)Éa.

Вторым правильным модусом является «утверждающе-отрицающий способ рассуждения» (modus ponendo tollens), в котором второй посылкой служит простое категорическое суждение, являющееся в логической структуре первой посылки одним из суждений-дизъюнктов. Так осуществляется переход от утверждения одного (нескольких) из членов дизъюнктивной посылки к отрицанию другого его члена, что может быть выражено в случае двухчленной дизъюнкции только двумя схемами:

 

1) ((А Ú В)ÙА)ÉØВ,

2) ((А Ú В)ÙВ)ÉØА.

v Пример

Поскольку всякое тяготеющее тело в одно и то же время может находиться только в одном месте из двух и это тяготеющее тело в настоящее время находится в данном месте, то это тяготеющее тело в настоящее время не находится в другом месте.

Или: «В силу того, что любая дилемма является простой или сложной и сложная деструктивная дилемма — именно сложная, то сложная деструктивная дилемма не является простой».

Очевидно, что логический союз «или» в modus ponendo tollens обеспечивает логическое следование только при его использовании в смысле строгой дизъюнкции, употребление же этого союза в смысле нестрогой дизъюнкции логического следования не даёт, поэтому законами классической логики высказываний являются две формулы данного модуса:

 

1) ((aÚb)Ùa)ÉØb,

2) ((a Ú b)Ùb)ÉØa.

 

Разделительно-условные или условно-разделительные (лемматические) умозаключения состоят из посылок, имеющих структуру импликативных и дизъюнктивных суждений.

В зависимости от числа содержащихся в посылках импликативных суждений и соответственно членов дизъюнкции лемматические умозаключения могут иметь форму дилеммы (содержит два импликативных суждения и два дизъюнкта), трилеммы (содержит три импликативных суждения и три дизъюнкта), полилеммы (содержит более чем три импликативных суждения и такое же число дизъюнктов).

Дилемма (от греч. diV - дважды и lhmma — лемма, предположение, посылка) — это лемматическое умозаключение, в первой из посылок которого содержатся два импликативных суждения, во второй — дизъюнктивное, составленное из двух дизъюнктов суждение.

Поскольку суждения, являющиеся в логической структуре импликаций первой посылки антецедентами, либо консеквентами, а в логической структуре второй посылки взятыми без отрицания либо с отрицанием дизъюнктами, могут находиться в импликативной связи (имплицировать или быть имплицированными) с одним или двумя (тремя для трилемм и т. д.) суждениями, то следует различать две разновидности дилемм (в целом — две разновидности лемм): простую дилемму и сложную дилемму.

Простая дилеммаэто такая разновидность дилемм, в логической структуре которой взятые без отрицания либо с отрицанием суждения-дизъюнкты второй посылки являются антецедентами или консеквентами суждений первой посылки, импликативно связанными только с одним суждением.

 

v Пример

Вариант А (с взятыми во второй посылке без отрицания дизъюнктами в качестве антецедентов первой посылки):

Если по металлу пропускать электрический ток, то он нагреется, и если металл расплющивать, то он нагреется.

Известно, что по металлу пропускают электрический ток, или расплющивают металл.

_____________________________________________________________________________________________________________

Металл нагреется.

 

Или «Если будешь переправляться через эту реку вброд, то вымокнешь; если станешь будешь переправляться через эту реку вплавь, то тоже вымокнешь; через эту реку можно переправляться вброд или вплавь, значит, при переправе через эту реку непременно вымокнешь».

 

Формула приведённых примеров:

 

((aÉc)Ù(bÉc))Ù(aÚb))Éc,

 

где в первом примере: а — суждение «По металлу пропускают электрический ток», являющееся дизъюнктом второй посылки и одним из антецедентов первой посылки, b — суждение «Металл нагревается», являющееся дизъюнктом второй посылки и одним из антецедентов первой посылки, с — суждение «Металл расплющивают», имплицируемое первым и вторым антецедентами.

 

Докажем методом таблиц истинности, что данная формула является законом классической логики высказываний (рис. 26):

 

a b c ((a É c) Ù (b É c)) Ù (a Ú b)) É c
и и и и и и и л и  
и и л л л л л и и  
и л и и и и и и и  
и л л л л и л и и  
л и и и и и и и и  
л и л и л л л и и  
л л и л и и л л и  
л л л и и и и л и  

 

Рис. 26

 

v Пример

Вариант В (с взятыми во второй посылке с отрицанием дизъюнктами в качестве консеквентов первой посылки):

 

Если при нормальном атмосферном давлении чистая вода нагрета до 100°С, то она кипит и если при нормальном атмосферном давлении чистая вода нагрета до 100°С, то она заваривает чай.

Чистая вода не кипит или она не заваривает чай.

_____________________________________________________________________________________________________________

Чистая вода не нагрета при нормальном атмосферном давлении до 100°С.

 

Формула приведённого примера:

 

((cÉa)Ù(cÉb))Ù(ØaÚØb))ÉØc,

 

где а — суждение «Чистая вода является нагретой при нормальном атмосферном давлении до 100˚С», выступающее антецедентом в отношении обоих консеквентов, b — суждение «Чистая вода является кипящей», входящее в качестве первого консеквента в логическую структуру первой посылки и служащее первым отрицаемым дизъюнктом в логической структуре второй посылки, с — суждение «Чистая вода является заваривающей чай», входящее в качестве второго консеквента в логическую структуру первой посылки и служащее вторым отрицаемым дизъюнктом в логической структуре второй посылки.

 

Докажем методом таблиц истинности, что данная формула также является законом классической логики высказываний (рис. 27):

 

a b c ((c É a) Ù (c É b)) Ù (Øa Ú Øb)) É Øc
и и и и и и л л и  
и и л и и и л л и  
и л и и л л л л и  
и л л и и и и и и  
л и и л л и л л и  
л и л и и и и и и  
л л и л л л л л и  
л л л и и и и и и  

 

Рис. 27

 

Сложные дилеммы выражаются тождественно-истинными формулами:

 

Вариант С((aÉc)Ù(bÉd))Ù(aÚb))É(cÚd);

Вариант D((cÉa)Ù(dÉb))Ù(ØaÚØb))É(ØcÚØd).

 

Поскольку же суждения, являющиеся в логической структуре первой посылки антецедентами или консеквентами, берутся в качестве альтернатив второй посылки либо без отрицания (конструктивно), либо с отрицанием (деструктивно), то различают такие разновидности дилемм (в целом — две разновидности лемм), как конструктивная дилемма и деструктивная дилемма. Итак, простые и сложные дилеммы могут быть как конструктивными, так и деструктивными (например, формула варианта А) выражает простую и конструктивную дилемму; формула варианта В) выражает простую и деструктивную дилемму; формула варианта С) выражает сложную и конструктивную дилемму; формула варианта D) выражает сложную и деструктивную дилемму. Схемы всех разновидностей дилемм — это:

 

1. Для п ростых конструктивных дилемм:

((АÉ С)Ù(BÉC))Ù(AÚB))ÉC.

 

2. Для сложных конструктивных дилемм:

((АÉС)Ù(BÉD))Ù(AÚB))É(CÚD).

3. Для простых деструктивных дилемм:

((СÉА)Ù(CÉB))Ù(ØAÚØB))ÉØC.

 

4. Для сложных деструктивных дилемм:

((СÉА)Ù(DÉB))Ù(ØAÚØB))É(ØCÚØD).

 

Глава седьмая

КЛАССИЧЕСКОЕ ИСЧИСЛЕНИЕ

ВЫСКАЗЫВАНИЙ

 

Логический смысл исчислений

Рассмотренные выше логические теории (традиционная силлогистика, классическая логика высказываний, равно как и рассматриваемая далее классическая логика предикатов) отвечают на вопрос о правильности или неправильности конкретных рассуждений, выделяя среди них и подробно анализируя рассуждения дедуктивного типа, но не ставят и не решают вопроса о том, как собственно осуществляются какие бы то ни было дедуктивные рассуждения. На последний вопрос призвана отвечать теория дедуктивных рассуждений.

Теория дедуктивных рассуждений — это теория последовательного пошагового дедуктивного перехода от исходных высказываний к последующим. Каждый шаг этого перехода осуществляется на основе какого-либо правила вывода (дедуктивного принципа), обеспечивающего отношение логического следования между исходными и всеми последующими суждениями. Теория дедуктивных рассуждений структурирует не только знание данного перехода (как в содержательных теориях), но и средство получения этого знания, т. е. является формальной теорией.

В рамках теории дедуктивных рассуждений существуют теории, называемые исчислениями, содержание которых фиксируется на специально созданном символическом языке, а все допустимые преобразования строятся как преобразования одних последовательностей символов в другие.

Исчисления могут иметь как аксиоматический характер, так и быть натуральными исчислениями, т. е. содержащими только правила вывода и не содержащими аксиом. Классическая символическая логика включает в себя две разновидности исчислений:

1) классическое исчисление высказываний;

2) классическое исчисление предикато в.

Вначале рассмотрим натуральное исчисление высказываний как широко используемую в познавательных целях разновидность классических исчислений.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 413; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.153.232 (0.009 с.)