Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Классическая логика высказыванийСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Общая характеристика и особенности языка Классической логики высказываний (КЛВ) Логика высказываний, в отличие от рассмотренной выше силлогистики, относящейся к типу формализованных теорий, является содержательной теорий. В теориях последнего типа дедукция не является необходимым элементом и в случае использования применяется лишь для связи некоторых отдельных положений теории. Суждения, применяемые в содержательной теории в качестве посылок, могут быть неистинными, поэтому любое рассуждение с их использованием даёт условно истинные заключения, т. е. заключение признаётся истинным лишь в том случае, если были истинными используемые посылки. Такие особенности логики высказываний обусловлены уровнем выявления логических форм контекстов естественного языка, предполагающим абстрагирование от содержания, внутренней структуры простых высказываний, и учёт только того, с помощью каких союзов и в каком порядке эти высказывания организуют сложные.
v Пример Высказывание «На Солнце есть разумная жизнь и государственные образования, поэтому на это небесное тело в 1911 г. был отправлен посол Соединённых штатов земного шара» является ложным как в целом, так в составляющих частях, а именно: положения дел, описываемые в составляющих его трёх простых высказываниях не соответствуют действительности: 1) «На Солнце есть разумная жизнь» — ложь; 2) «На Солнце есть государственные образования» — ложь; 3) «На Солнце в 1911 г. был отправлен посол Соединённых штатов земного шара» — ложь. Но это же высказывание имеет такую же логическую форму как другие, например, уже истинное как в своих частях, так и в целом высказывание «Клубника является вкусной и полезной ягодой, поэтому пользуется спросом потребителей», или истинное в некоторых своих частях и ложное в других частях и в целом высказывание «Зимой в Омске стоит жара и замерзает лёд на Иртыше, в силу чего некоторые пьют минеральную воду». Из чего легко сделать достоверный вывод, что логическая форма, отвлечённая от содержания и внутренней структуры простых высказываний, составляющих какие-то сложные высказывания, не гарантирует истинность построенного по ней рассуждения, допуская как истинные, так и ложные его варианты.
Итак, классическая логика высказываний имеет дело с логическими формами только сложных высказываний. Сложным будем считать высказывание, включающее в себя другие высказывания, в противном случае высказывание называется простым. Естественно, что в состав сложного высказывания могут входить категорические атрибутивные и иные суждения. Поскольку логика высказываний не затрагивает внутреннюю структуру простых высказываний, то в ней можно применять любые виды простых суждений, что обусловливает предельную сжатость спектра используемых семантических категорий (рис. 14):
Рис. 14
Таким образом, формализованный язык классической логики высказываний (ЯКЛВ) помимо технических знаков содержит только один тип нелогических символов, замещающих простые высказывания естественного языка и называемых пропозициональными переменными (их принято обозначать прописными буквами латинского алфавита, например, p, q, r, s или a, b, c, d и т. д.). А также — только один тип логических символов (Ù; Ú; É; º; Ø и т. п.), имеющих прототипами союзы естественного языка и называемых пропозициональными связками.
v Пример Приведённые в предыдущем примере сложные высказывания имеют логическую форму: (pÙq)Ér. При этом первое и второе из высказываний составлено из трёх общеутвердительных простых суждений, а третье — как из общеутвердительных («Зимой в Омске стоит жара» и «Зимой в Омске замерзает лёд на Иртыше»), так и частноутвердительного («Некоторые пьют минеральную воду»).
Организующим эту форму началом (равно как и любую логическую форму в классической логике высказываний) являются пропозициональные (т. е. высказывательные) связки, понимаемые в качестве операций, позволяющих из каких-то суждений (высказываний) строить новые суждения (высказывания).
Обобщив характеристику КЛВ и особенности ЯКЛВ, станем в дальнейшем использовать в качестве рабочего определения рассматриваемой теории следующее: Логикой высказываний (пропозициональной логикой) называется содержательная логическая теория, язык которой включает только пропозициональные переменные, пропозициональные связки и технические знаки.
6.2. Пропозициональные связки; образование формул КЛВ К основным видам пропозициональных связок в классической логике высказываний могут быть отнесены: 1) конъюнкция (для её обозначения используют символы «Ù», «&», «×»); 2) дизъюнкция (для обозначения её разновидностей используют символы «Ú», «Ú»); 3) импликация (для обозначения её разновидностей используют символы «É», «®»); 4) эквиваленция (используемые для обозначения символы: «º», ««», «~»); 5) отрицание (используемые для обозначения символы: «Ø», «~»). В зависимости от того, «связывается» ли в новое высказывание одно либо несколько исходных высказываний, принято различать «унарные» и «бинарные» разновидности пропозициональных связок. К «унарной» разновидности в приведённом списке основных видов пропозициональных связок относя отрицание, остальные же связки трактуются как «бинарные». v Пример Когда мы из какого-либо исходного высказывания, могущего быть либо простым (например, a), либо сложным (например, (pÙq)Ér), при помощи унарной логической связки «отрицание» организуем новое сложное высказывание, то получим логические формы: (Øa) и (Ø(pÙq)Ér)), читающиеся: «Неверно, что а» и «Неверно, что если p и q, то r». В содержательном варианте это могут быть выражения: «Неверно, что сегодня пятница» и «Неверно, что если сегодня пятница и тринадцатое число, то все дела пойдут насмарку». Используемая же во втором из этих исходных высказываний логическая связка «конъюнкция» организует два исходных простых высказывания p и q в соответствующее сложное: (pÙq), а последнее затем увязывается «импликацией» с очередным простым высказыванием r, в результате чего организуется в целом формула (pÙq)Ér).
С учётом сказанного дадим определения каждой из основных пропозициональных связок. 1. Конъюнкция (от лат. conjunction — союз, связь) — это бинарная логическая связка, т. е. образующая из нескольких формул новую, более сложную формулу, в которой утверждается наличие одновременного положения дел в каждом отдельном суждении, соответствующем исходным формулам. Прототипами конъюнктивной связки в естественном языке являются союзы «и», «а», «но», «не только…, но и», «хотя», «да», «однако», «который», «зато» и т. п., которые употребляются для соединения различных частей речи. Формула сложного суждения, состоящего из двух суждений-конъюнктов, имеет вид (pÙq). v Пример Конъюнктивными суждениями являются высказывания: — «На столе лежат книги и письменные принадлежности», состоящее из двух простых суждений, описывающих ситуации, которые могут в зависимости от конкретных обстоятельств либо одновременно несоответстветствовать, либо соответствовать действительности: p — «На столе лежат книги» и q — «На столе лежат письменные принадлежности». Логическая форма: (pÙq).
— «Солнце — звезда, а Луна — планета, но мы живём на Земле», состоящее из трёх простых суждений, в которых описывается ситуации, одновременно соответствующие реальному положению дел в нашей солнечной системе: p — «Солнце является звездой», q — «Луна является планетой» и r — «Мы есть живущие на Земле». Логическая форма: (pÙqÙr).
2. Дизъюнкция (от лат. disjunction — разобщение, различение) — это бинарная логическая связка, т. е. образующая из нескольких формул новую, в которой утверждается наличие по крайней мере одного из двух положений дел, утверждаемых отдельными суждениями, соответствующими исходным формулам. Прототипами дизъюнктивной связки в естественном языке являются союзы «или», «либо», «то ли…, то ли» и т. п.
Поскольку члены дизъюнкции могут быть как не исключающими друг друга (не исключается возможность одновременного наличия выражаемого ими положения дел), так и исключающими друг друга (исключается возможность одновременного наличия выражаемого ими положения дел), то следует различать нестрогую (слабую) и строгую (сильную, альтернативную) дизъюнкции. v Пример Высказывание «Осадки могут выпадать в виде дождя или мокрого снега» является нестрогим дизъюнктивным суждением, состоящим из двух суждений-дизъюнктов, истинность одного из которых не исключает истинность другого (p — «Осадки могут выпадать в виде дождя», q — «Осадки могут выпадать в виде мокрого снега»); (pÚq) — формула данного высказывания. Высказывание «Всякое существо смертно или нетленно» является строгим дизъюнктивным суждением, состоящим из двух суждений-дизъюнктов, истинность одного из которых исключает истинность другого (p — «Всякое существо смертно», q — «Всякое существо нетленно»); (p Ú q) — формула данного высказывания (черта под знаком дизъюнкции символизирует альтернативность). 3. Материальная (строгая) импликация (от лат. implicatio — сплетение, от implico — тесно связываю) — это бинарная логическая связка, образующая из двух формул А и В новую формулу (АÉВ), в которой утверждается, что при наличии положения дел в выражении А имеет место также и положение дел, описываемое в выражении В. Прототипами строгой импликативной связки в естественном языке являются союзы «если…, то», «если», «только если», «коль скоро…, то», «для… необходимо», «для… достаточно», «когда…, имеет место» и т. п. Имеющееся в формуле строгой импликации выражение А называется антецедентом (от лат. antecedens — предшествующий, предыдущий). Имеющееся в формуле материальной импликации выражение В называется консеквентом (от лат. consequens — следствие). В строгой импликации антецедент — это именно просто предшествующее суждение, не предполагающее обязательности смысла «являющееся обусловливающим». Если этот смысл присутствует и логически оформлен, мы имеем дело с релевантной (уместной) импликацией, где суждение А мыслится именно как обусловливающее, а суждение В именно как обусловленное; формуларелевантной импликации может быть записана следующим образом: p®q. Формула (p®q) означает: «Невозможно, чтобы А было истинно, а В было ложно». Классическая логика высказываний не использует релевантное имплицирование, что обусловливает наличие в этой теории парадоксов материальной импликации.
Одним из примеров проявления таких парадоксов является закон Дунса Скота, который можно передать так: ложное высказывание влечёт (имплицирует) любое высказывание. v Пример Например, «Если человек разумен и вместе с тем неразумен, то все пончики выпекаются только из глины». В рамках классической логики высказываний такое импликативное суждение, записываемое формулой (pÚØp)Éq, квалифицируется как формально истинное. 4. Материальная (строгая) эквиваленция (от позднелат. aequivalens — равноценный, равнозначный) — это бинарная логическая связка, образующая из двух формул А и В новую формулу (АºВ), в которой утверждается, что положения дел, описанные в выражениях А и В, либо одновременно имеют место, либо одновременно отсутствуют. Прототипами эквиваленции как связки в естественном языке являются союзы «если и только если», «если…, то…, и наоборот», «тогда и только тогда, когда», «для… необходимо и достаточно», «если…, и…, если», «в том и только в том случае, когда» и т. п. Строгими эквивалентными являются сложные высказывания «p, если и только если q», образованные из высказываний p и q и разлагающиеся на две импликации: «если p, то q» и «если q, то p» (отсюда встречающееся название — «двойная импликация»). v Пример Треугольник является равносторонним, если и только если он является треугольником.
5. Отрицание — это унарная логическая связка, образующая из формулы А новую формулу ØА, в которой утверждается отсутствие положения дел, описываемого в выражении А. Прототипом отрицания как связки в естественном языке является выражение «неверно, что» и его аналоги. v Пример Неверно, что некоторые планеты солнечной системы не вращаются вокруг Солнца (Øp). Неверно, что наш мир существует и не существует (Ø(pÙØp)) и т. п.
При этом будем иметь в виду, что формула классической логики высказываний — это любое правильно построенное выражение языка этой логической теории, т. е. выражение правильно фиксирующее логическую форму сложного высказывания. Формулой классической логики высказываний является всякая пропозициональная переменная p («элементарная формула»), а также логические единства пропозициональных переменных и пропозициональных связок (сложная формула): pÙq, pÚq, pÉq, pº q, Ø p, Ø ( pÙq ) и т. п. Формула, входящая в состав некоторой формулы, называется её подформулой, равно как и сама исходная формула.
|
||||||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 844; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.46.87 (0.012 с.) |