Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Силовые линии электрического поля↑ Стр 1 из 5Следующая ⇒ Содержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ Согласно представлениям современной физики воздействие одного заряда на другой передается через электростатическое поле – особую бесконечно простирающуюся материальную среду, которую создает вокруг себя каждое заряженное тело. Электростатические поля не могут быть обнаружены органами чувств человека. Однако, на заряд, помещённый в поле, действует сила прямо пропорциональная величине этого заряда. Т.к. направление силы зависит от знака заряда, то условились использовать для исследования полей, так называемый, пробный заряд q0. Это положительный, точечный заряд, который помещают в интересующую нас точку электрического поля. Соответственно в качестве силовой характеристики поля целесообразно использовать отношение силы к величине пробного заряда q0:
. (3)
Эта постоянная для каждой точки поля векторная величина равная силе, действующей на единичный, положительный заряд называется напряженностью. Для поля точечного заряда q на расстоянии r от него:
, (4)
Направление вектора совпадает с направлением силы, действующей на пробный заряд. [E] = Н / Кл или В/м. В диэлектрической среде сила взаимодействия между зарядами, а значит и напряженность поля, уменьшается в ε раз:
, . (5)
При наложении друг на друга нескольких электростатических полей, результирующая напряженность определяется как векторная сумма напряженностей каждого из полей (принцип суперпозиции):
. (6)
Графически распределение электрического поля в пространстве изображается с помощью силовых линий. Эти линии проводятся так, чтобы касательные к ним в любой точке совпадали с . Это означает, что вектор силы, действующей на заряд, а значит и вектор его ускорения, тоже лежат на касательных к силовым линиям, которые нигде и никогда не пересекаются. Силовые линии электростатического поля не могут быть замкнутыми. Они начинаются на положительном и заканчиваются на отрицательном зарядах или уходят в бесконечность.
РАБОТА СИЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ. ПОТЕНЦИАЛ
Электрическое поле, подобно гравитационному, является потенциальным. Т.е. работа, выполняемая электростатическими силами, не зависит от того, по какому маршруту заряд q перемещен в электрическом поле из точки 1 в точку 2. Эта работа равна разности потенциальных энергий, которыми обладает перемещаемый заряд в начальной и конечной точках поля: А1,2 = W1 – W2. (7)
Можно показать, что потенциальная энергия заряда q прямо пропорциональна величине этого заряда. Поэтому в качестве энергетической характеристики электростатического поля используется отношение потенциальной энергии пробного заряда q0, помещенного в какую-либо точку поля, к величине этого заряда:
. (8)
Эта величина представляет собой количество потенциальной энергии на единицу положительного заряда и называется потенциалом поля в заданной точке. [φ] = Дж / Кл = В (Вольт). Если принять, что при удалении заряда q0 в бесконечность (r→ ∞) его потенциальная энергия в поле заряда q обращается в нуль, то потенциал поля точечного заряда q на расстоянии r от него:
. (9)
Если поле создаётся системой точечных зарядов, то потенциал результирующего поля равен алгебраической (с учётом знаков) сумме потенциалов каждого из них:
. (10)
Из определения потенциала (8) и выражения (7) работа, совершаемая силами электростатического поля по перемещению заряда из
точки 1 в точку 2, может быть представлена как:
(11)
ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗАХ НЕСАМОСТОЯТЕЛЬНЫЙ ГАЗОВЫЙ РАЗРЯД
Газы при не слишком высоких температурах и при давлениях, близких к атмосферному, являются хорошими изоляторами. Если поместить в сухой атмосферный воздух, заряженный электрометр, то его заряд долго остается неизменным. Это объясняется тем, что газы при обычных условиях состоят из нейтральных атомов и молекул и не содержат свободных зарядов (электронов и ионов). Газ становится проводником электричества только, когда некоторая часть его молекул ионизуется. Для ионизации газ надо подвергнуть воздействию какого-либо ионизатора: например, электрический разряд, рентгеновское излучение, радиации или УФ-излучение, пламя свечи и т.д. (в последнем случае электропроводность газа вызвана нагреванием). При ионизации газов происходит вырывание из внешней электронной оболочки атома или молекулы одного или нескольких электронов, что приводит к образованию свободных электронов и положительных ионов. Электроны могут присоединяться к нейтральным молекулам и атомам, превращая их в отрицательные ионы. Следовательно, в ионизованном газе имеются положительно и отрицательно заряженные ионы и свободные электроны. Э лектрический ток в газах называется газовым разрядом. Т.о., ток в газах создается ионами обоих знаков и электронами. Газовый разряд при таком механизме будет сопровождаться переносом вещества, т.е. ионизированные газы относятся к проводникам второго рода. Для того чтобы оторвать от молекулы или атома один электрон, необходимо совершить определенную работу Аи, т.е. затратить определенную энергию. Эту энергию называют энергией ионизации, значения которой для атомов различных веществ лежат в пределах 4÷25 эВ. Количественно процесс ионизации принято характеризовать величиной, которая называется потенциал ионизации: . (26)
Одновременно с процессом ионизации в газе всегда идет и обратный процесс – процесс рекомбинации: положительные и отрицательные ионы или положительные ионы и электроны, встречаясь, воссоединяются между собой с образованием нейтральных атомов и молекул. Чем больше ионов возникает под действием ионизатора, тем интенсивнее идет и процесс рекомбинации. Строго говоря, электропроводность газа никогда не равна нулю, так как в нем всегда имеются свободные заряды, образующиеся в результате действия излучения радиоактивных веществ, имеющихся на поверхности Земли, а также космического излучения. Интенсивность ионизации под действием указанных факторов невелика. Эта незначительная электропроводность воздуха является причиной утечки зарядов наэлектризованных тел даже при хорошей их изоляции. Характер газового разряда определяется составом газа, его температурой и давлением, размерами, конфигурацией и материалом электродов, а так же приложенным напряжением и плотностью тока. Рассмотрим цепь, содержащую газовый промежуток (рис.), подвергающийся непрерывному, постоянному по интенсивности воздействию ионизатора. В результате действия ионизатора газ приобретает некоторую электропроводность и в цепи потечет ток. На рис приведены вольт-амперные характеристики (зависимость тока от приложенного напряжения) для двух ионизаторов. Производительность (число пар ионов произведенных ионизатором в газовом промежутке за 1 секунду) второго ионизатора больше чем первого. Будем считать, что производительность ионизатора величина постоянная и равная n0. При не очень низком давлении практически все отщепившиеся электроны захватываются нейтральными молекулами, образуя отрицательно заряженные ионы. С учетом рекомбинации, примем, что концентрации ионов обоих знаков одинаковы и равны n. Средние скорости дрейфа ионов разных знаков в электрическом поле разные: , . b- и b+ – подвижности ионов газа. Теперь для области I, c учетом (5), можно записать:
(27)
Как видно, в области I с увеличением напряжения ток возрастает, так как растет скорость дрейфа. Число пар рекомбинирующих ионов с ростом их скорости, при этом будет уменьшаться. Область II – область тока насыщения – все созданные ионизатором ионы достигают электродов, не успевая рекомбинировать. Плотность тока насыщения jн = q n0 d, (28)
где d – ширина газового промежутка (расстояние между электродами). Как видно из (28) ток насыщения является мерой ионизирующего действия ионизатора. При напряжении больше Uпp (область III) скорость электронов достигает такой величины, что при столкновении с нейтральными молекулами они способны вызвать ударную ионизацию. В результате образуется дополнительно Аn0 пар ионов. Величина А называется коэффициентом газового усиления. В области III этот коэффициент не зависит от n0, но зависит от U. Т.о. заряд, достигающий электродов при постоянном U прямо пропорционален производительности ионизатора – n0 и напряжению U. По этой причине область III называется областью пропорциональности. Uпр – порог пропорциональности. Коэффициент газового усиления А имеет значения от 1 до 104. В области IV, области частичной пропорциональности, коэффициент газового усиления начинает зависеть от n0. Эта зависимость растет с ростом U. Ток резко увеличивается. В диапазоне напряжений 0 ÷ Uг, ток в газе существует только при действующем ионизаторе. Если действие ионизатора прекратить, то прекращается и разряд. Разряды, существующие только под действием внешних ионизаторов, называются несамостоятельными. Напряжение Uг – порог области, области Гейгера, которая соответствует состоянию, когда процесс в газовом промежутке не исчезает и после выключения ионизатора, т.е. разряд приобретает характер самостоятельного разряда. Первичные ионы только дают толчок для возникновения газового разряда. В этой области способность ионизировать приобретаю уже и массивные ионы обоих знаков. Величина тока не зависит от n0. В области VI напряжение настолько велико, что разряд, однажды возникнув, больше не прекращается – область непрерывного разряда. САМОСТОЯТЕЛЬНЫЙ ГАЗОВЫЙ РАЗРЯД И ЕГО ТИПЫ
Разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным. Рассмотрим условия возникновения самостоятельного разряда. При больших напряжениях (области V–VI), возникающие под действием внешнего ионизатора электроны сильно ускоренные электрическим полем, сталкиваясь с нейтральными молекулами газа, ионизируют их. В результате чего образуются вторичные электроны и положительные ионы (процесс 1 на рис. 158). Положительные ионы движутся к катоду, а электроны – к аноду. Вторичные электроны вновь ионизируют молекулы газа, и, следовательно, общее количество электронов и ионов будет возрастать по мере продвижения электронов к аноду лавинообразно. Это является причиной увеличения электрического тока (см. рис. область V). Описанный процесс называется ударной ионизацией. Однако ударной ионизации под действием электронов недостаточно для поддержания разряда при удалении внешнего ионизатора. Для этого необходимо, чтобы электронные лавины «воспроизводились», т. е. чтобы в газе под действием каких-то процессов возникали новые электроны. Такие процессы схематически показаны на рис. 158: Ускоренные полем положительные ионы, ударяясь о катод, выбивают из него электроны(процесс 2); Положительные ионы, сталкиваясь с молекулами газа, переводят их в возбужденное состояние, переход таких молекул в нормальное состояние сопровождается испусканием фотона (процесс 3); Фотон, поглощенный нейтральной молекулой, ионизирует ее, происходит так называемый процесс фотонной ионизации молекул (процесс 4); Выбивание электронов из катода под действием фотонов (процесс 5). Наконец, при значительных напряжениях между электродами газового промежутка наступает момент, когда положительные ионы, обладающие меньшей длиной свободного пробега, чем электроны, приобретают энергию, достаточную для ионизации молекул газа (процесс 6), и к отрицательной пластине устремляются ионные лавины. Когда возникают кроме электронных лавин еще и ионные, сила тока растет уже практически без увеличения напряжения (область VI на рис.). В результате описанных процессов число ионов и электронов в объеме газа лавинообразно возрастает, и разряд становится самостоятельным, т. е. сохраняется и после прекращения действия внешнего ионизатора. Напряжение, при котором возникает самостоятельный разряд, называется напряжением пробоя. Для воздуха это составляет около 30 000 В на каждый сантиметр расстояния. В зависимости от давления газа, конфигурации электродов, параметров внешней цепи можно говорить о четырех типах самостоятельного разряда: тлеющем, искровом, дуговом и коронном. 1. Тлеющий разряд. Возникает при низких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30÷50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно откачивая из трубки воздух, то при давлении ≈ 5,3÷6,7 кПа возникает разряд в виде светящегося извилистого шнура красноватого цвета, идущего от катода к аноду. При дальнейшем понижении давления шнур утолщается, и при давлении ≈ 13 Па разряд имеет вид, схематически изображенный на рис.. Непосредственно к катоду прилегает тонкий светящийся слой 1 – первое катодное свечение, или катодная пленка, затем следует темный слой 2 – катодное темное пространство, переходящее далее в светящийся слой 3 – тлеющее свечение, имеющее резкую границу со стороны катода, постепенно исчезающую со стороны анода. Оно возникает из-за рекомбинации электронов с положительными ионами. С тлеющим свечением граничит темный промежуток 4 – фарадеево темное пространство, за которым следует столб ионизированного светящегося газа 5 – положительный столб. Положительный столб существенной роли в поддержании разряда не имеет. Например, при уменьшении расстояния между электродами трубки его длина сокращается, в то время как катодные части разряда по форме и величине остаются неизменными. В тлеющем разряде особое значение для его поддержания имеют только две его части: катодное тёмное пространство и тлеющее свечение. В катодном тёмном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны с катода (вторичная эмиссия). В области тлеющего свечения же происходит ударная ионизация электронами молекул газа. Образующиеся при этом положительные ионы устремляются к катоду и выбивают из него новые электроны, которые, в свою очередь, опять ионизируют газ и т. д. Таким образом непрерывно поддерживается тлеющий разряд. При дальнейшем откачивании трубки при давлении ≈ 1,3 Па свечение газа ослабевает и начинают светиться стенки трубки. Электроны, выбиваемые из катода положительными ионами, при таких разрежениях редко сталкиваются с молекулами газа и поэтому, ускоренные полем, ударяясь о стекло, вызывают его свечение, так называемую катодолюминесценцию. Поток этих электронов исторически получил название катодных лучей. Тлеющий разряд широко используется в технике. Так как свечение положительного столба имеет характерный для каждого газа цвет, то его используют в газосветных трубках для светящихся надписей и реклам (например, неоновые газоразрядные трубки дают красное свечение, аргоновые – синевато-зеленое). В лампах дневного света, более экономичных, чем лампы накаливания, излучение тлеющего разряда, происходящее в парах ртути, поглощается нанесенным на внутреннюю поверхность трубки флуоресцирующим веществом (люминофором), начинающим под воздействием поглощенного излучения светиться. Спектр свечения при соответствующем подборе люминофоров близок к спектру солнечного излучения. Тлеющий разряд используется для катодного напыления металлов. Вещество катода в тлеющем разряде вследствие бомбардировки положительными ионами, сильно нагреваясь, переходит в парообразное состояние. Помещая вблизи катода различные предметы, их можно покрыть равномерным слоем металла. 2. Искровой разряд. Возникает при больших напряженностях электрического поля.(≈ 3·106 В/м) в газе, находящемся под давлением порядка атмосферного. Искра имеет вид ярко светящегося тонкого канала, сложным образом изогнутого и разветвленного. Объяснение искрового разряда дается на основе стримерной теории, согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизованного газа. Эти скопления называются стримерами. Стримеры возникают не только в результате образования электронных лавин посредством ударной ионизации, но и в результате фотонной ионизации газа. Лавины, догоняя друг друга, образуют проводящие мостики из стримеров, по которым в следующие моменты времени и устремляются мощные потоки электронов, образующие каналы искрового разряда. Из-за выделения при рассмотренных процессах большого количества энергии газ в искровом промежутке нагревается до очень высокой температуры (примерно 104 К), что приводит к его свечению. Быстрый нагрев газа ведет к повышению давления и возникновению ударных волн, объясняющих звуковые эффекты при искровом разряде – характерное потрескивание в слабых разрядах и мощные раскаты грома в случае молнии, являющейся примером мощного искрового разряда между грозовым облаком и Землей или между двумя грозовыми облаками. Искровой разряд используется для воспламенения горючей смеси в двигателях внутреннего сгорания и предохранения электрических линий передачи от перенапряжений (искровые разрядники). При малой длине разрядного промежутка искровой разряд вызывает разрушение (эрозию) поверхности металла, поэтому он применяется для электроискровой точной обработки металлов (резание, сверление). Его используют в спектральном анализе для регистрации заряженных частиц (искровые счетчики). 3. Дуговой разряд. Если после зажигания искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд становится непрерывным – возникает дуговой разряд. При этом сила тока резко возрастает, достигая сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Дуговой разряд можно получить от источника низкого напряжения минуя стадию искры. Для этого электроды (например, угольные) сближают до соприкосновения, они сильно раскаляются электрическим током, потом их разводят и получают электрическую дугу (именно так она была открыта русским учёным В. В. Петровым). При атмосферном давлении температура катода приблизительно равна 3900 К. По мере горения дуги угольный катод заостряется, а на аноде образуется углубление – кратер, являющийся наиболее горячим местом дуги. По современным представлениям, дуговой разряд поддерживается за счет высокой температуры катода из-за интенсивной термоэлектронной эмиссии, а также термической ионизации молекул, обусловленной высокой температурой газа. Дуговой разряд находит широкое применение в народном хозяйстве для сварки и резки металлов, получения высококачественных сталей (дуговая печь), освещения (прожекторы, проекционная аппаратура). Широко применяются также дуговые лампы с ртутными электродами в кварцевых баллонах, где дуговой разряд возникает в ртутном паре при откачанном воздухе. Дуга, возникающая в ртутном паре, является мощным источником ультрафиолетового излучения и используется в медицине (например, кварцевые лампы). Дуговой разряд при низких давлениях в парах ртути используется в ртутных выпрямителях для выпрямления переменного тока. 4. Коронный разряд – высоковольтный электрический разряд, который возникает при высоком (например, атмосферном) давлении в неоднородном поле (например, вблизи электродов с большой кривизной поверхности, остриё игольчатого электрода). Когда напряженность поля вблизи острия достигает 30 кВ/см, то вокруг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда. В зависимости от знака коронирующего электрода различают отрицательную или положительную корону. В случае отрицательной короны рождение электронов, вызывающих ударную ионизацию молекул газа, происходит за счет эмиссии их из катода под действием положительных ионов, в случае положительной – вследствие ионизации газа вблизи анода. В естественных условиях корона возникает под влиянием атмосферного электричества у вершин мачт кораблей или деревьев (на этом основано действие молниеотводов). Это явление получило в древности название огней святого Эльма. Вредное действие короны вокруг проводов высоковольтных линий электропередач состоит в возникновении токов утечки. Для их снижения провода высоковольтных линий делаются толстыми. Коронный разряд, являясь прерывистым, становится также источником радиопомех. Используется коронный разряд в электрофильтрах, применяемых для очистки промышленных газов от примесей. Газ, подвергаемый очистке, движется снизу вверх в вертикальном цилиндре, по оси которого расположена коронирующая проволока. Ионы, имеющиеся в большом количестве во внешней части короны, оседают на частицах примеси и увлекаются полем к внешнему некоронирующему электроду и на нем оседают. Коронный разряд применяется также при нанесении порошковых и лакокрасочных покрытий. ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ Согласно представлениям современной физики воздействие одного заряда на другой передается через электростатическое поле – особую бесконечно простирающуюся материальную среду, которую создает вокруг себя каждое заряженное тело. Электростатические поля не могут быть обнаружены органами чувств человека. Однако, на заряд, помещённый в поле, действует сила прямо пропорциональная величине этого заряда. Т.к. направление силы зависит от знака заряда, то условились использовать для исследования полей, так называемый, пробный заряд q0. Это положительный, точечный заряд, который помещают в интересующую нас точку электрического поля. Соответственно в качестве силовой характеристики поля целесообразно использовать отношение силы к величине пробного заряда q0:
. (3)
Эта постоянная для каждой точки поля векторная величина равная силе, действующей на единичный, положительный заряд называется напряженностью. Для поля точечного заряда q на расстоянии r от него:
, (4)
Направление вектора совпадает с направлением силы, действующей на пробный заряд. [E] = Н / Кл или В/м. В диэлектрической среде сила взаимодействия между зарядами, а значит и напряженность поля, уменьшается в ε раз:
, . (5)
При наложении друг на друга нескольких электростатических полей, результирующая напряженность определяется как векторная сумма напряженностей каждого из полей (принцип суперпозиции):
. (6)
Графически распределение электрического поля в пространстве изображается с помощью силовых линий. Эти линии проводятся так, чтобы касательные к ним в любой точке совпадали с . Это означает, что вектор силы, действующей на заряд, а значит и вектор его ускорения, тоже лежат на касательных к силовым линиям, которые нигде и никогда не пересекаются. Силовые линии электростатического поля не могут быть замкнутыми. Они начинаются на положительном и заканчиваются на отрицательном зарядах или уходят в бесконечность.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 753; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.37.43 (0.013 с.) |