Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Эквипотенциальные поверхности. Связь между потенциалом и напряженностью электрического поля.Содержание книги
Поиск на нашем сайте Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью. Между двумя любыми точками на эквипотзенциальной поверхности разность потенциалов равна нулю, поэтому работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности равна нулю. Это означает, что вектор силы Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд (рис. 112).
Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности (рис. 113). Для установления связи между силовой характеристикой электрического поля - напряжённостью и его энергетической характеристикой – потенциалом рассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: d A = q E d l, эта же работа равна убыли потенциальной энергии заряда q: d A = - d W п = - q d Ex d x + Ey d y + Ez d z = -d где Ex, Ey, Ez - проекции вектора напряженности на оси системы координат. Поскольку выражение (1.8) представляет собой полный дифференциал, то для проекций вектора напряженности имеем откуда E = - grad Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность E направлена в сторону убывания потенциала.
7. Проводники в электрическом поле (электрическое поле, потенциал и заряды внутри проводника). Распределение зарядов на заряженном проводнике. Его электрическое поле. 1. Свободные заряды в проводнике способны перемещаться под действием сколь угодно малой силы. Поэтому для равновесия зарядов в проводнике должны выполняться следующие условия: 2. Напряженность поля внутри проводника должна быть равна нулю 3. Напряженность поля на поверхности проводника должна быть перпендикулярна
Следовательно, поверхность проводника при равновесии зарядов является эквипотенциальной. При равновесии зарядов ни в каком месте внутри проводника не может быть избыточных зарядов – все они распределены по поверхности проводника с некоторой плотностью σ. Рассмотрим замкнутую поверхность в форме цилиндра, образующие которого перпендикулярны поверхности проводника. На поверхности проводника расположены свободные заряды с поверхностной плотностью σ. Т.к. внутри проводника зарядов нет, то поток
т.е. вектор электрического смещения равен поверхностной плотности свободных зарядов проводника или
Электрические заряды, располагающиеся на поверхности проводника с некоторой плотностью s создают вне проводника электрическое поле. Вблизи поверхности проводника напряженность поля направлена по нормали n в каждой точке поверхности, то есть так как силовые линии перпендикулярны эквипотенциальным поверхностям. Для вычисления поля вблизи проводника снова используем теорему Остроградского-Гаусса. В качестве воображаемой поверхности возьмем поверхность бесконечно малого цилиндра, расположенного перпендикулярно проводнику так, что одно из его оснований находится вне проводника, а другое - внутри (рис. 2.2).
Рис. 2.2. Электрическое поле вблизи поверхности изолированного заряженного проводника В этом случае поток через основание внутри проводника равен нулю, так как внутри проводника нет поля. Далее, поток через боковые стенки также равен нулю, поскольку они параллельны вектору напряженности поля. Остается поток через основание площадью dS вне проводника. Тогда полный поток вектора электрической напряженности E через поверхность цилиндра будет равен
Согласно теореме Остроградского-Гаусса,
|
|||||||
|
Последнее изменение этой страницы: 2016-08-14; просмотров: 678; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.33 (0.006 с.) |