Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Химическая кинетика и химическое равновесиеСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Химическая кинетика – раздел химии, изучающий скорость и механизм химических реакций. Различают гомогенные и гетерогенные химические реакции. Гомогенные реакции протекают в объеме одной фазы – в жидком (водном) или газовом растворе. Например, 2СО(г) + О2(г) = 2СО2(г) (8) Гетерогенные реакции протекают на границе раздела фаз: г – ж, г – т, т – т и т.д. Например, 2С(т) + О2(г) = 2СО(г) (9) Скорость химической реакции (υ ) – это изменение количества вещества одного из реагентов за единицу времени в единице реакционного пространства. Она зависит от природы реагирующих веществ, температуры (Т), давления (Р), концентрации (С) реагирующих веществ и других факторов. Зависимость υ от С выражается законом действующих масс: При постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам в уравнении реакции. Например, для гомогенной реакции (8) υ = k∙С2СО ×СО2, где k – константа скорости химической реакции, которая зависит от природы реагирующих веществ, температуры, присутствия катализатора, но не зависит от концентрации реагирующих веществ; С – молярные концентрации веществ (моль / л). Для гетерогенной реакции (9) υ = k×СО2 , так как концентрации твердых веществ постоянны и приняты равными единице, т.е. СС = 1. Зависимость скорости химической реакции от температуры выражает правило Вант-Гоффа: при повышении температуры на каждые 10º скорость химической реакции увеличивается примерно в 2 – 4 раза. Математическое выражение закона Вант-Гоффа: , (10) где υТ1 и υТ2 – скорости реакции при температурах Т1 и Т2; γ - температурный коэффициент скорости химической реакции. Он показывает, во сколько раз увеличивается скорость реакции при повышении температуры на 10º. По полноте протекания химических процессов различают необратимые и обратимые химические реакции. Необратимые реакции протекают только в одном направлении и завершаются полным превращением исходных веществ в продукты реакции. Обратимые реакции при одной и той же температуре протекают как в прямом, так и в обратном направлении и завершаются установлением в системе химического равновесия. Они не идут до конца, в системе всегда остаются исходные вещества: N2(г) + 3H2(г) ⇄ 2NH3(г) (11) Химическое равновесие – такое состояние химического взаимодействия, при котором скорости прямой и обратной реакций равны между собой, т.е. . После наступления состояния равновесия концентрации реагирующих веществ при данных условиях остаются неизменными и называются равновесными концентрациями, обозначаются в квадратных скобках [ ]. Количественной характеристикой химического равновесия является константа химического равновесия К – величина, определяемая соотношением равновесных концентраций продуктов реакции и исходных веществ.Если в соотношение для константы равновесия входят равновесные концентрации, то ее обозначают символом Кс, а если используются парциальные давления газов (Рi), то – символом Кр. Например, для реакции (11): , Состояние химического равновесия устанавливается и сохраняется лишь при определенных условиях (температуре, давлении и концентрации реагирующих веществ). При изменении хотя бы одного из этих условий, т.е. при каком-либо внешнем воздействии, равновесие в системе нарушается, и система переходит в новое состояние равновесия. Этот переход называется смещением химического равновесия. Влияние внешних воздействий (изменение Т, Р или С) на состояние химического равновесия можно предсказать, пользуясь принципом Ле Шателье - Брауна: если на систему, находящуюся в равновесии, оказать внешнее воздействие, то равновесие смещается в том направлении, которое ослабляет эффект внешнего воздействия, т.е на внешнее воздействие система отвечает противодействием. Так увеличение концентрации какого-либо вещества вызовет противодействие системы – стремление уменьшить концентрацию этого вещества, что возможно путем смещения равновесия в направлении, при котором концентрация этого вещества будет уменьшаться. Повышение Робщ или Рi; приводит к смещению равновесия в сторону протекания той реакции, которая вызывает уменьшение Робщ и Рi и наоборот, понижение Робщ или Pj смещает равновесие в направлении той реакции, которая приводит к увеличению этих параметров. Повышение температуры вызывает смещение равновесия в направлении протекания той реакции, которая сопровождается поглощением теплоты, т.е. эндотермической (∆Н > 0). Понижение температуры будет вызывать смещение равновесия в сторону экзотермической реакции, сопровождающееся выделением теплоты (∆Н < 0). Примеры решения задач Пример 1. Как изменится скорость реакции 2NО(г) + О2(г) ⇄ 2NO2(г) , если Р е ш е н и е. 1) Зависимость скорости химической реакции от концентрации реагирующих веществ выражается законом действующих масс, поэтому записываем математическое выражение этого закона для данной реакции в начальный момент времени: Согласно условию концентрацию NO увеличили в 2 раза, т.е. С'NO=2С NO, а концентрацию О2 уменьшили в 8 раз, т.е. С'o2 = Сo2 /8. 2) Записываем выражение для скорости реакции в конечный момент времени: υ' = k × (С' NO)2 × С'o2 или 3) Определяем, как изменяется скорость реакции. Для этого рассматриваем отношение = 1/2 Ответ: при одновременном увеличении концентрации NО в 2 раза и уменьшении концентрации О2 в 8 раз скорость реакции уменьшается в 2 раза. Пример 2. Определите, во сколько раз изменятся скорости прямой и обратной реакций в системе 2SO2 (г) + О2 (г) ⇄ 2SО3 (г), если объем газовой смеси уменьшить в 3 раза. Каково направление смещения равновесия в этой системе? Р е ш е н и е. 1) Записываем выражения для скоростей прямой и обратной реакций, используя закон действующих масс: , 2) Рассматриваем, что происходит в реакционной системе при уменьшении ее объема. Уменьшение объема гомогенной системы в 3 раза приводит к увеличению концентрации каждого из реагирующих веществ также в 3 раза, т.е. математически это записываем в виде: С'so2 = 3С so2, С'о2 = 3Сo2 и С'so3 = 3С so3. 3) Записываем выражение для скоростей прямой и обратной реакций после изменения объема системы: 4) Определяем, во сколько раз изменяются скорости прямой и обратной реакций: ; Таким образом, при уменьшении объема газовой смеси в 3 раза скорость прямой реакции увеличится в 27 раз, а скорость обратной реакции – в 9 раз. 5) Устанавливаем направление смещения равновесия в этой системе. В связи с тем, что скорость прямой реакции увеличилась в 27 раз, а обратной – только в 9 раз, равновесие сместится в направлении протекания прямой реакции, т.е. в сторону образования SO3. Пример 3. Рассчитайте температурный коэффициент скорости химической реакции, если известно, что константа скорости этой реакции при 140°С равна 5,5 × 10-4, а при 185°С – 9,2 × 10-3. Дано: Т1 =140° С, k1 =5,5 × 10 -4; Т2= 185°С, k2 = 9,2∙× 10-3. Найти γ. Р е ш е н и е. 1) Зависимость скорости химической реакции от температуры описывается правилом Вант-Гоффа в форме: Но для проведения расчетов это уравнение необходимо прологарифмировать, т.е. 2) Рассчитываем температурный коэффициент скорости этой реакции. а) вычисляем температуру по абсолютной шкале: T1 = 140 + 273 = 413 К, Т2 = 185 + 273 = 458 К; б) рассчитаем численное значение γ: , lg 16,7 = 4,5 lgγ отсюда , т.е. lg γ = 0,27, и тогда γ = 1,87. Ответ: температурный коэффициент этой реакции равен 1,87. Пример 4. При синтезе аммиака N2 + ЗН2 ⇄ 2NНз равновесие установилось при следующих концентрациях реагирующих веществ (моль/л) [ N2 ] = 4; [ H2 ] = 2 и [ NH3 ] = 6. Рассчитайте константу равновесия и исходные концентрации Н2 и N2. Дано: [ Н2 ]=2 моль/л, [ N2 ] = 4 моль/л, [ NH3 ] = 6 моль/л. Найти Кс, Сисх (Н2), Cиcx (N2). Р е ш е н и е. 1) Записываем выражение для константы равновесия в этой системе и рассчитываем ее значение: ; 2) Определяем исходные концентрации Н2 и N2. Для обратимых реакций ни одно из реагирующих веществ не расходуется полностью. Поэтому исходная концентрация вещества А складывается из равновесной концентрации этого вещества [А] и концентрации этого вещества, которая была израсходована на реакцию к моменту установления равновесия (условно обозначим ее X (А). Таким образом, выражение для исходной концентрации вещества А может быть представлено в виде: Сисх(А) = [А] + Х(А). а) Для определения Сисх(N2) и Сисх(Н2) обращаемся к уравнению реакции, согласно которому на образование 2 моль NH3 требуется 1 моль N2 и 3 моль Н2. Но поскольку равновесная концентрация NH3 равна 6 моль/л, то при этом было израсходовано 6/2 = 3 моль N2 и 3×(6 / 2) = 9 моль Н2. б) Рассчитаем Сисх(N2) и Сисх(Н2): Сисх(Н2) = [Н2] + Х(Н2) = 2 + 9 = 11 моль/л, Cисх(N2) = [N2] + X(N2) = 4 + 3 = 7 моль/л. Ответ: константа равновесия реакции равна 1,1. Исходные концентрации Н2 и N2 составляют 11 моль/л и 7 моль/л соответственно. Пример 5. Установите направление смещения равновесия в системе 2Н2О(г)+ 2О2(г) ⇄ 2Н2О2 (г), ∆ Н = – 483,7 кДж при понижении температуры и уменьшении общего давления. Р е ш е н и е. Влияние внешнего воздействия на состояние химического равновесия в системах, в которых протекают обратимые реакции, оценивается с помощью принципа Ле Шателье-Брауна. 1) Рассматриваем влияние температуры на состояние равновесия в данной системе. Термохимическое уравнение реакции показывает, что ∆Н < 0, следовательно, прямая реакция экзотермическая. При понижении температуры согласно принципу Ле Шателье-Брауна система будет стремиться ослабить внешнее воздействие (т.е. повысить Т), а это возможно за счет реакции, протекающей с выделением теплоты, т.е. экзотермической реакции. Следовательно, понижение температуры приведет к смещению равновесия в направлении протекания прямой реакции. 2) Оцениваем влияние изменения давления на состояние равновесия в данной системе. Из уравнения реакции видно, что прямая реакция сопровождается уменьшением объема системы 2V (Н2О) + 2V (О2) ≠ 2V (Н2О2), т.е. ∆V ≠ 0. Поэтому общее давление (Робщ) будет влиять на состояние равновесия в данной системе. Уменьшение Робщ согласно принципу Ле Шателье-Брауна вызовет противодействие системы (увеличение Робщ) за счет смещения равновесия в сторону протекания реакции, сопровождающейся увеличением Робщ, т.е. в сторону обратной реакции. Действительно, обратная реакция приводит к увеличению числа моль газообразных веществ в системе, а это значит, что при протекании обратной реакции Робщ в системе увеличивается. 1.7. Электролитическая диссоциация. Реакции ионного обмена Электролитическая диссоциация – это процесс распада молекул электролита на ионы под действием полярных молекул растворителя. Электролиты – это вещества, расплавы или водные растворы которых проводят электрический ток. К ним относятся растворы кислот, расплавы и растворы щелочей и солей. Неэлектролиты – это вещества, которые не проводят электрический ток. К ним относятся многие органические вещества. Электролиты, которые практически полностью диссоциируют на ионы, называются сильными; электролиты, которые частично диссоциируют на ионы, называются слабыми. Для количественной оценки полноты диссоциации введено понятие степени диссоциации. Степенью диссоциации электролита называют отношение числа молекул, распавшихся на ионы, к общему числу молекул, находящихся в растворе. Обычно степень диссоциации (α) выражают в долях единицы или %: , (12) где n – число частиц, подвергшихся электролитической диссоциации; n 0 – общее число частиц в растворе. Сильные электролиты – почти все соли, растворимые основания (NaOH, KOH, Ba(OH)2 и др.), неорганические кислоты (H2SO4, HCl, HNO3, HBr, HI и др). Слабые электролиты – нерастворимые основания и NH4OH, неорганические кислоты (H2CO3,, H2S, HNO2, H3PO4 и др.), органические кислоты и вода H2O. Сильные электролиты диссоциируют на ионы практически нацело (т.е. процесс диссоциации является необратимым) и одностадийно: HCl = H+ + Cl– H2SO4 = 2H+ + SO42– Слабые электролиты диссоциируют частично (т.е. процесс диссоциацииявляется обратимым) и ступенчато. Например, для многоосновных кислот на каждой стадии происходит отрыв одного иона водорода: 1. H2SO3 ⇄ H+ + HSO3- 2. HSO3- ⇄ H+ + SO32- Таким образом, число стадий многоосновных кислот определяется основностью кислоты (числом ионов водорода), а число стадий многокислотных оснований будет определяться кислотностью основания (или числом гидроксильных групп): NH4OH ⇄ NH4+ + OH–. Процесс электролитической диссоциации завершается установлением в системе состояния химического равновесия, которое характеризуется константой равновесия: Константа равновесия процесса электролитической диссоциации называется константой диссоциации – КД. Константа диссоциации зависит от природы электролита, природы растворителя, температуры, но не зависит от концентрации электролита. Между КД и α существует количественная связь: (13) Соотношение (13) называют законом разбавления Оствальда: степень диссоциации слабого электролита возрастает с разбавлением раствора. Для слабых электролитов, когда α << 1, КД = α2С. Вода является слабым электролитом, поэтому диссоциирует обратимо: H 2O ⇄ H+ + OH– ∆H = +56,5кДж/моль Константа диссоциации воды: Степень диссоциации воды очень мала (это очень слабый электролит). Так как вода присутствует в большом избытке, то ее концентрация может считаться величиной постоянной и составляет , тогда КД [ H2O] = [H+]∙[OH-] = 55,6∙1,8∙10-16 = 10-14 [ H+]∙[OH-] = 10-14 = KW – ионное произведение воды Так как в воде концентрации катионов водорода и гидроксид-ионов равны, то: [ H+] = [OH-] = . Растворение в воде других веществ (кислот, оснований, солей) изменяет концентрацию ионов Н+ или ОН–, а их произведение всегда остается постоянным и равным 10-14 при Т=250С. Концентрация ионов Н+ может служить мерой кислотности или щелочности раствора. Обычно для этой цели используется водородный показатель: pH = -lg[H+]. Таким образом, водородный показатель – это десятичный логарифм концентрации ионов водорода, взятый с обратным знаком.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 481; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.132.178 (0.01 с.) |