Приборы для измерения атмосферного и близкого к нему давления



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Приборы для измерения атмосферного и близкого к нему давления



Для измерения атмосферного или близкого к нему давления применяют барометры. Эти приборы показы­вают абсолютное давление воздуха. Шкала барометра ограничена областью измерения от 680 до 800 мм рт. ст. Барометры применяют для измерения давления в открытом пространстве. Жидкостные барометры.Прибор (рис. 290) представляет собой закры­тую с одного конца U-образную трубку, запаянный конец которой значительно длиннее открытого. Трубку заполняют ртутью; над ее слоем в запаянном конце трубки со­здается безвоздушное пространство. Столб ртути в запаянном длинном

Рис. 290. Ртутный барометр: 1 — стеклянная труб­ка; 2—ртутный столб; 3 — шкала.

Рис. 291. Схема устройства коробчатого

барометра:

/ — коробка с волнистой крышкой; 2 — пру* жнна; 3 — система рычагов; 4 — стрелка.


 


В табл. 11 приведены соотношения между указан-j ными величинами.

ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ

В лабораторной практике применяют приборы дл^ измерения давления — атмосферного и близкого к нем}

Хотя все эти приборы отличаются по конструкции но принципиальной разницы между ними нет; все ониЗ измеряют силу, действующую на единицу поверхности.^ В качестве противодействия этой силе служит или столб} жидкости, или сила пружины.


конце имеет такую высоту, при которой вес этого стол­ба уравновешивается весом столба атмосферного воз­духа.

Между обоими коленами трубки установлена подвиж­ная миллиметровая шкала; при ее помощи можно изме­рить разность высот в обоих коленах. Эта разность оавна давлению воздуха, выраженному в миллиметрах ртутного столба.

При точных барометрических измерениях одновремен­но следует определять и температуру окружающего про­странства. Это необходимо делать потому, что с измене­нием температуры изменяется плотность ртути вследствие

21-117


Теплового расширения и изменения давления паров ее J в закрытом конце трубки. Поэтому полученные бароме­трические значения требуют уточнения и исправления в] соответствии со специальными таблицами поправок к ба­рометру.

Существуют и более сложные формы жидкостных ртут-1 ных барометров.

Металлические барометры различают двух основньи конструкций: коробчатые и трубчатые. У к о р о б ч а| тых барометров (рис. 291) давление воздуха дей|

Рис. 293. Барограф.

Рис. 292. Схема устройства трубчатого барометра:

/ — полая трубка; 2 — система ры­чагов; 3 — стрелка.

:

ствует на волнистую, очень эластичную крышку пусто металлической эвакуированной коробки.

У трубчатых барометров (рис. 292) да^ ление воздуха действует на плоскую согнутую пустуй внутри металлическую трубку — наружная поверхности ее больше, чем внутренняя. Небольшие колебания давлеЗ ния воздуха при помощи системы рычагов увеличиваются и указываются на шкале.

Самопишущие барометры, так называв мые барографы (рис. 293), снабжены рычагомл который давит на писец, касающийся ленты диаграммы —I давление — время, укрепленной на барабане. Барабан при водится в движение часовым механизмом, завод которой может быть суточным или недельным.

Приборы для измерения давления больше атмосферного

Для измерения давления больше атмосферного при^ меняют манометры (так же иногда называют при|


боры и для определения давления ниже атмосферного — см. далее).

Жидкостные манометры бывают откры­тые и закрытые.

Открытые жидкостные манометры применяются двух видов: прямые и наклонные. Прямой (рис. 294) представ­ляет собой открытую с обеих сторон U-образную трубку, один конец которой соединяют с системой с измеряемым давлением. Трубка наполнена запираю­щей жидкостью, в качестве которой слу­жат вода или ртуть, а также силиконы. Преимуществом силиконов является то, что они не смачивают, как вода, стенок трубки и при этом более чувствительны, чем ртуть, к небольшим колебаниям давления.

Поскольку давление в системе выше атмосферного, столб ртути в правом ко­лене (см. рис. 294) оказывается выше, чем столб ртути в левом колене. Разность их равна величине h, измеряемой по шкале.

Рис. 294. Жидкостной открытый манометр, прямой.

Открытые манометры с наклонным ко­леном (рис. 295) обладают более высокой чувствительностью по сравнению с пря­мыми: в наклонном колене жидкость продвигается на большее расстояние, чем в вертикальном. Давление столба h мм рт. ст.) в этом случае вычисляют путрм умножения длины столба жидкости / на синус угла наклона а, т. е. h — I bin a.

В закрытых жидкостных манометрах рабочим телом является газ, находящийся над запирающей жидкостью (ртуть) в закрытом колене (рис. 29Р-). При измерении по­вышенного давления столб ртути в правом колене повы­шается и газ сжимается. Длину его столба измеряют по шкале. Недостатком этих манометров является то, что деления шкалы у них неравномерные, т. е. более узкие для более высокого давления.

Металлические манометры. Применяются манометры с пластинчатой пружиной (рис. 297), у ко­торых, в отличие от барометров, вместо эвакуированной коробки имеется только эластичная крышка. На одну

21*


сторону ее действует измеряемое давление (например, в автоклаве), на другую — атмосферное. Разность этих давлений указывается стрелкой на шкале.

Трубчатые пишущие ма­нометры (рис. 298) снабжены со­гнутой неэвакуированной трубкой, име­ющей в разрезе эллиптическую фор­му. Эту трубку соединяют с сосудом, в котором должно быть измерено дав­ление.

Рис. 296. Жидкостной манометр, закрытый.

Рнс. 295. Жидкостной открытый манометр, наклонный.

Распространены также специаль­ные манометры, у которых на шка-

Рис. 297. Схема устройства Рис. 298. Схема устройства
металлического манометра металлического трубчатого

с пластинчатой пружиной. манометра.

ле имеется красная черта, указывающая предельное дав-} ление, которое может быть развито в аппарате или соя суде, снабженном таким манометром. При помощи систе-..


мы рычагов и писца давление, развивающееся в аппарате, записывается на специальной круглой диаграмме или, если применен барограф, на плоской диаграмме давле­ние — время.

Приборы для измерения давления ниже атмосферного

Для измерения давления ниже атмосферного приме­няют вакуумметры. Существует несколько конструкций этих приборов, рассчитанных на определенные границы разрежения (вакуума).

Простые ртутные манометры (вакуумметры), которые применяют для контроля за процессом перегонки под ва­куумом, представляют собой LJ-образную трубку и рас­считаны на диапазон давления от 0 до приблизительно 200 мм рт. ст. (рис. 299). Шкала может быть подвижной, тогда ее нулевую точку устанавливают на уровне мениска столба ртути в запаянном колене, или неподвижной. В этом случае для определения давления следует склады­вать расстояния между нулем и обоими менисками.

С такими манометрами (вакуумметрами) можно опре­делять давление с точностью до 0,5 мм рт. ст., если отсчитывать на глаз, и до 0,02 мм рт. ст., если отсчет вести с помощью катетометра. Катетометр представляет собой горизонтальную зрительную трубу, передвигающую­ся вертикально по станине, установленной строго верти­кально. С помощью шкалы, которой снабжена станина, и нониуса положение трубы может быть определено с точ­ностью до 0,01 мм. При отсчетах трубу нужно устанавли­вать так, чтобы горизонтальная нить, натянутая по диа­метру окуляра, всегда совпадала с верхним краем мени­ска ртути. Замер производят несколько раз, после чего находят среднее арифметическое из всех отсчетов. Давле­ние будет равно разности средних величин, определенных для каждого из менисков манометра (вакуумметра).

Для измерения высокого вакуума, т. е. очень малых давлений, порядка 10~в мм рт. ст., применяют другие приборы. Из них часто пользуются манометром Мак? Леода (рис. 300) Этот прибор верхним концом трубки £ припаивают к той части установки, в которой нужно из­мерять давление. Для измерения давления медленно от­крывают кран 3, впуская внешний воздух в резервуар /.


 




Рис. 300. Манометр Мак-Леода (вакуумметр): / — резервуар для ртути; 2. 8 — трубки; 3, 4 — краны; 5 — бал­лон; 6, 7 — капил­ляры.

Под действием атмосферного давления ртуть поднимается, заполняя баллон 5, в котором до этого было давление, равное давлению в установке. Нужно помнить, что ртуть в приборе должна подниматься очень медленно. Это важ­но потому, что при быстром подъеме возможны аварии вследствие толчков или ударов ртути о стенки прибора. Для облегчения регулирования впуска воздуха через

 

Рис. 299. Простой ртутный манометр

(вакуумметр):

а — исходное положение; б — положение прн из­мерении.

кран 3 его входное отверстие следует соединить резиновой трубкой с капилляром. Через этот капилляр воздух будет поступать в прибор с требуемой скоростью. Регулировать скорость подъема можно также при помощи крана 4. Когда баллон 5 заполнится ртутью, находящийся в нем ранее газ будет сжат в капилляре 6. Поэтому измеряе-j мое давление можно вычислить по формуле Бойля —\ Мариотта, исходя из того, что объем сжатого газа Vi йч его давление Р1 известны, как известен и объем газа V0i до сжатия:

PnVn = PiVi


Объем газа до Сжатия равен сумме емкостей баллона 5, широкой трубки выше метки с и капилляра 6. Эти вели­чины должны быть определены еще до того, как манометр будет впаян в установку*.

Давление сжатого газа находят по разности уровней ртути в капиллярах 6 и 7.

Для оборудования обычного манометра Мак-Леода требуется от 5 до 10 кг ртути. Поэтому необходимо очень осторожно обращаться с прибором, так как всегда есть опасность разбить его и разлить ртуть. Более безопас­ные условия работы создаются при использовании мано-

Рис. 301. Манометр Мозера (вакуумметр): а — исходное положение; б — положение при измерении.

метра (вакуумметра) Мозера, который заполняется значительно меньшим количеством ртути (рис. 301). Ма­нометр Мозера действует по тому же принципу, что и манометр Мак-Леода, но для его наполнения требуется всего лишь 80—300 г ртути. Эти приборы имеют чаще всего три области измерения: от 500 до 10 мм рт. ст., от Ю-1 до 10 мм рт. ст. и от Ю-1 до Ю-4 мм рт. ст.

При помощи шлифа прибор соединяют с аппаратом, в котором требуется измерить давление. При измерении манометр поворачивают против часовой стрелки до тех

* Подробное описание метода определения этих величин см. Герасимов Я. П., Древинг В. П., Коман-Д и н А. В., Химическая термодинамика, Изд. МГУ, 1951.


 


пор, пока ртутный мениск во внешней трубке не достигнет некоторого предельного уровня. По уровню мениска ртути во внутреннем колене, снабженном логарифмической шка­лой, определяют давление в системе (в мм рт. ст.) Перед каждым отсчетом манометр (вакуумметр) следует вначале . привести в исходное положение, т. е. шар должен быть опущен вниз.

Другие способы измерения вакуума

Кроме описанных, существует еще несколько способов опреде­ления высокого вакуума. Так, вакуумметр Пирани основан на зависимости теплопроводности газов от давления. В ионизационных вакуумметрах Пеннинга использовано образование ионов при столкновении молекул газа с электронами. Мольный вакуумметр Геде основан, на измерении силы удара молекул газа. Все эти приборы позволяют измерять давление до 10 мм рт. ст. Работа с этими вакуумметра­ми подробно описана в инструкциях, приложенных к приборам.



Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.214.224.207 (0.03 с.)